CS 491/591 Blockchains, HW1

Prof. Jared Saia, University of New Mexico

Note: The first problem in this hw is from the CS 251 “Cryptocurrencies
and Blockchain Technologies” class at Stanford.

1. In class we defined two security properties for a hash function, one
called collision resistance and the other called puzzle-friendly. Show
that a collision-resistant hash function may not be puzzle friendly.
Hint: Let H : X — {0,...2"—1} be a collision-resistant hash function.
Construct a new hash function H : X — {0,...2™—1} (for m possibly
larger than n), where H' is collision-resistant but not puzzle-friendly.
To show H' is collision-resistant, you can show that whenever there is
a collision in H, there is also a collision in H’. To show that H' is not
puzzle-friendly, you can show that for some difficulty D (say 232), it is
computationally easy to find a value x such that H'(z) < 2™/D.

2. k-ary Merkle trees. Alice can use a binary Merkle tree to commit to a
set of elements S= {77, ..., T,,} so that later she can prove to Bob that
some T; is in S using an inclusion proof containing at most [logn|
hash values. The binding commitment to S is a single hash value.

In this question your goal is to explain how to do the same using a
k-ary tree, that is, where every non-leaf node has up to k children.
The hash value for every non-leaf node is computed as the hash of the
concatenation of the values of all its children.

(a) Suppose S = {T1,...,Ty}. Explain how Alice computes a com-
mitment to S using a 3-ary Merkle tree. How does Alice later
prove to Bob that Ty is in S7?

(b) Suppose S contains n elements. What is the length of the proof
that proves that some T; is in S, as a function of n and k7

(c) For large n, if we want to minimize the proof size, is it better to
use a binary or a 3-ary tree? Why?



3. A one-way function is a function that can be computed in polynomial
time on every input, but can not be inverted in polynomial time, i.e.
f(x) can be computed in polynomial time. But the output of any
randomized algorithm F' that tries to invert f is correct only with
small probability. In particular, for all randomized algorithms F', any
constant ¢ > 0, and for length(z) = n sufficiently large,

The cryptographic hash functions discussed in class are special cases
of one-way functions.

Recall that the set P is the set of languages that can be recognized in
polynomial time, e.g. alanguage like “The set of graphs with Minimum
spanning trees with cost less than 100.” And N P is the set of languages
that have a polynomial time checkable certificate that a string is in the
language. For example, one language in NP consists of the pairs (x,y),
where x is a graph that is 3 colorable and y is a certificate giving the
3-coloring of G.

e Show that if one way hash functions exist, then P # NP. You
can assume that the functions always map inputs of length n bits
to outputs of length ©(n) bits. Hint: You may find it easier to
prove the contrapositive: If P = NP, then one-way functions do
not exist. Then, think about developing a language that is in
NP (and thus in P by the assumption), where that language can
help you, when given y, build up bit by bit an inverse value =
such that f(z) =y.

4. In lecture, we stated that in a finite size group, every element has finite
order. Prove that statement. Hint: Remember that in a group, every
element has an inverse.

5. Consider the following magic trick. Let p = 13. Pick any positive
integer x. Now compute (pz + 1)? mod p. You will always get back
the number 1.

(a) Compute the outcome of this trick by hand with your favorite
integer x. Use multiplicative and additive facts about modular
arithmetic to speed up your computation by hand. Show your
work. What final answer did you get? Eerie, right?

(b) Now explain this magic trick based on things we proved in lecture.



(¢) Now, make up your own magic trick based on your favorite lemma
or theorem from lecture.

6. Recall the Fiat-Shamir public-key digital signature scheme we dis-
cussed in class. In this problem, youll do a toy example of that
scheme over the multiplicative group Z7; = {1,2,3,4,5,6,7,8,9,10}.
Note that a generator for this group is ¢ = 2. Assume that Alice has
private-key = 2 and public key y = 2”. Let the random target (or
commitment) chosen by Alice be t = ¢* = 7 (mod 11), and let the
random challenge chosen by Bob be ¢ = 2.

(a) What is the correct response, r that Alice will choose such that
g"y¢ = t, and how does she compute it?

(b) When the group size is large, what makes it hard for someone
else to find the correct value for r?

(c) If Alice wants to prove she knows x without relying on Bob, how
should she choose ¢?



