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Note: These notes are based on material from James Aspnes (see reference below)

1 The Consensus Problem

In the Consensus Problem, every process starts with a single input bit. We require that all non-
faulty processes terminate and also:

• Agreement: All non-faulty processes decide the same value

• Validity: The value decided must equal the input bit of some non-faulty process

2 Definitions and Model

Definition 1. A step is either a pair (p,m) where process p receives message m or a pair (p,⊥)
where p receives nothing and performs at least one send. We say that a step (p,m) is enabled when
a message m has been sent to process p, and the step (p,m) is applied when process p receives the
message m. A step (p,⊥) is enabled when process p has reached a step in its algorithm to send at
least one message, and (p,⊥) is applied when p sends at least one message.

Definition 2. A configuration consists of the states of all processors, and all events that have been
enabled but have not yet been applied by the scheduler.

Our model assumes fairness: if (p,m) or (p,⊥) is continuously enabled it eventually is applied.
Since messages are never lost, once (p,m) is enabled in some configuration C, it is enabled in all
successor configurations until if eventually happens; same for (p,⊥). Then, any non-faulty process
eventually performs any enabled step.

Our model is asynchronous in the sense that all we assume is fairness. The adversary always
gets to choose which enabled step to apply, provided that it eventually applies each enabled step.

3 FLP Result

The FLP theorem statement is simple and stark.

Theorem 1. There is no deterministic algorithm for consensus in the asynchronous model that
tolerates even a single fault.

“If you encounter someone posturing as an expert in consensus, I enourage you to ask them if they
know the statement of the FLP impossibility theorem. If you really want to be hostile, ask them if
they know anything about the proof (which as we’ll see is not so easy” - Tim Roughgarden

4 Proof Overview

For configuration C and enabled step e, we will write the new configuration reached by applying
step e as Ce.

Let a trace be a sequence of steps. We will write CT as the new configuration reached applying
all steps in T to C.
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Figure 1. Assume initial configurations C and C′ are univalent and differ only in the input of processor x.

Definition 3. A configuration C is bivalent if there exist traces T1 and T2 such that CT1 has all
processes output 0 and CT2 has all processes output 1. A configuration that is univalent if it is not
bivalent. Specifically, it is either 0-valent if it leads to outputs of 0 and 1-valent otherwise.

We will use the fact that the successor of any x-valent configuration is also x-valent.
Our general approach will be to show that we - remember “we” are the adversarial scheduler -

can keep any protocol in a bivalent state forever. This implies that we can keep any protocol from
ever deciding. A complication is that due to the fairness constraint in our model, we must also
allow every message to eventually be delivered; i.e. every enabled step must eventually be
applied. We’ll ensure this below by continually ensuring that we apply the oldest enabled step.

5 Initial Bivalent Configuration

Lemma 1. There exists a bivalent initial configuration.

Proof: Assume not. Then all initial configurations are univalent. Consider any two such configu-
rations C and C ′ that differ only in the input of a single process x; See Figure 1. The adversary
can make process x fault immediately and so ensure that configurations C and C ′ both decide on
the same value. Hence, C and C ′ must have the same valency.

But, we can change any initial configuration to any other initial configuration by traversing
through configurations where only a single process’s input is changed. So, all initial configurations
must have exactly the same valency. But, this contradicts the assumption of validity for consensus.
Hence, our initial assumption was wrong and there must be some bivalent initial configuration. □

We call a configuration faultless if no fault has occurred in the configuration.

Lemma 2. Let C be any faultless, bivalent configuration, and let e be any enabled step in C.
Then, from C we can reach some other faultless, bivalent configuration in which step e has been
applied.

Proof: Let S be the set of faultless configurations reachable from C in which step e has not been
applied (Figure 2, above the vertical line)

Assume, by way of contradiction, that there is no configuration C ′ in S such that C ′e is bivalent.
Then, since C is bivalent, there must be a pair of configurations C0 and C1 in S such that C0e is
0-valent and C1e is 1-valent (Figure 2). Since all configurations in S are reachable from C, and C
is univalent, there must be some configuration D and step e′ such that De is 0-valent and (De′)e
is 1-valent (or vice-versa).
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Figure 2. The configuration D and step e′

There are two cases:
CASE 1: e and e′ are steps of different processors p and p′. In this case, Dee′ = De′e,
since in an asynchronous system, no one can tell which process of the two had its step applied first.
Since Dee′ is 0-valent, Dee′ is also 0-valent. But, De′e is 1-valent. This is a contradiction!

CASE 2: e and e′ are steps of the same processor p. Consider some finite sequence of steps
σ = e1e2 . . . ek from D after steps e′ and e occur (in either order), in which no message from p is
delivered and some processor decides. Such a sequence must exist since p could fault. But then the
valency of configuration Dee′σ equals the valency of configuration De′eσ, since the other processors
never learn the order of e and e′. But, Dee′ is 0-valent and De′e is 1 valent. This is a contradiction!

Since we have a contradiction in both cases, there must be some configuration C ′ in S such that
C ′e is bivalent. □

Theorem 2. No algorithm can solve Consensus in the asynchronous model and tolerate 1 fault.

Proof: By Lemma 1, there is an initial bivalent configuration. This is where the adversary starts
the algorithm.

We will show that the adversary can keep the algorithm in faultless, bivalent configurations
indefinitely, while still ensuring fairness: every enabled step is eventually activated. This shows
that any algorithm can be caused to never terminate.

To show this, consider some faultless, bivalent configuration, C that the algorithm is currently
in, and let e be the oldest, enabled step in C. By Lemma 2, there is some configuration C ′ that
is reachable from C such that C ′e is a faultless, bivalent configuration. So the adversary simply
schedules steps in such a way that we first reach C ′ and then enable step e. We can repeat this
process indefinitely, while ensuring that every enabled step is eventually applied.

□

6 References

• Aspnes Notes: https://www.cs.yale.edu/homes/aspnes/pinewiki/FischerLynchPaterson.html
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