Note: These notes are based on online material including examples from Wikipedia (see references below)

1 Problem and Model

1.1 Multiplicative groups

The multiplicative group \mathbb{Z}_q^* is the set of all integers that are coprime (relatively prime) to q in the set $\{1, \ldots, n-1\}$ along with the multiplication operation modulo q

For example, \mathbb{Z}_7^* is the set $\{1, 2, 3, 4, 5, 6\}$, where multiplication occurs modulo q. What does this mean? It means that in the group \mathbb{Z}_7^* , $4 \cdot 5 = 6$, since $(4 \cdot 5 \mod 7) = (20 \mod 7) = 6$.

1.2 Fermat's Little Theorem

The following inductive proof is due to Euler, by way of Wikipedia. First we need a helper lemma.

Lemma 1. For any integers x and y and for any prime p,

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$

Proof: Recall from the binomial theorem that

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$$

where

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

Now consider the binomial coefficient when p is prime and 0 < i < p:

$$\binom{p}{i} = \frac{p!}{i!(p-i)!}$$

The numerator has a factor p, the denominator has no factor of p, and the coefficient is an integer. So, the coefficient must include a factor of p. Thus, for all 0 < i < p,

$$\binom{p}{i} \equiv 0 \pmod{p}$$

So for any prime p:

$$(x+y)^{p} \equiv \sum_{i=0}^{p} {p \choose i} x^{p-i} y^{i} \pmod{p}$$
$$\equiv {p \choose 0} x^{p} + {p \choose p} y^{p} \pmod{p}$$
$$\equiv x^{p} + y^{p} \pmod{p}$$

Now, for the main (little) course: Fermat's Little Theorem.

Theorem 1. For every prime p and integer a,

$$a^p \equiv a \pmod{p}$$

Proof: By induction on *a*. BC: $0^p \equiv 0 \pmod{p}$ IH: Assume $(a-1)^p \equiv (a-1) \pmod{p}$ IS: Using the fact that a = (a - 1) + 1, we have the following mod p

$$(a-1)+1)^{p} \equiv (a-1)^{p}+1^{p}$$
By Lemma 1
$$\equiv (a-1)+1^{p}$$
By IH
$$\equiv a$$

1.2.1FLT shows that \mathbb{Z}_p^* is a group

Fermat's Little theorem (FLT) shows that \mathbb{Z}_p^* , by showing that every element has an inverse. In particular, consider any element a in \mathbb{Z}_p^* . By FLT, $a \cdot a^{p-2} \equiv a^{p-1} \equiv 1$. Hence, a^{p-2} is the inverse of a.

The group $\mathbb{Z}^*_{\scriptscriptstyle \perp}$ is cyclic 1.3

A group G of size n is called *cyclic* if there exists some element $g \in G$ such that for all $g' \in G$, $g' = g^i$ for some integer $i \in [0, n-1]$.

For a group G and element $x \in G$, let ord(x) be the smallest positive integer i such that $x^i = 1$. In a finite group, every element has finite order. Can you see why??? Hint: remember that every element has an inverse.

Lemma 2. The group \mathbb{Z}_p^* is cyclic.

Proof: Let $\ell = lcm(ord(1), ord(2), \dots, ord(p-1))$ (recall that lcm is the least common multiple, so lcm(4,6) = 12).) Then, for all $a \in \mathbb{Z}_p^*$, since $ord(a)|\ell$, we've got:

$$a^{\ell} \equiv 1$$

Now consider the degree ℓ polynomial $x^{\ell} - 1$ in \mathbb{Z}_p . By the above argument, it must have at least p roots, since $a^{\ell} - 1 = 0$ for all $a \in \mathbb{Z}_p^*$. Since the degree of a polynomial must be as large as the number of roots, $\ell \geq p-1$.

Next, note that for any pair of elements a and b, there is an element that has order lcm(a, b)- this is just the element $a \cdot b$. Applying this repeatedly, it means there must be an element g of order ℓ . Hence $\ell \leq p-1$. Combining with the fact that $\ell \geq p-1$, shows that there must be an element of order p-1.

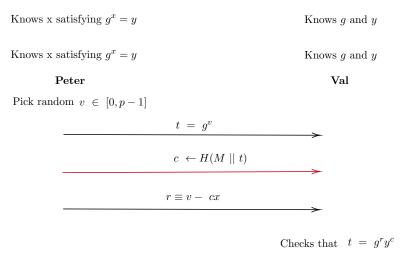
$\mathbf{2}$ Interactive proof of Knowledge

With all of the above lemmas in hand, let's devise an interactive proof of knowledge

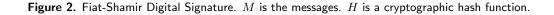


Checks that $t = g^r y^c$

Should hold since $g^r y^c = g^{v-cx} g^{cx} = g^v$



Should hold since $g^r y^c = g^{v-cx} g^{cx} = g^v$



3 References

Fiat-Shamir https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch22.pdf

Fermat's Little Theorem: https://en.wikipedia.org/wiki/Proofs_of_Fermat%27s_little_theorem Proof that Z_p^* is cyclic: https://math.stackexchange.com/questions/1240353/cyclic-group-zp