
CS 591 - Distributed Econ Secure MPC

1 The Millionaire Problem

We can create a function just using sums and products in Z2 that computes the outputs of any
circuit, without leaking information about the inputs. For example, imagine that Alice and Bob
are two millionaires. They want to learn who is richer, but they don’t want to leak information
about their own wealth, beyond what can be learned by the output. This is Yao’s two-millionaires
problem. A practical, but less colorful, example of when we might want to solve this type of problem
is when two (or more) people are bidding in an auction. We want to know who has the highest bid,
but don’t want to leak information about the bids. This information about the highest bidder can
then be used in another computation that completes the auction.

2 Secure MPC

The secure multiparty computation problem (MPC) generalizes the 2 Millionaire problem. Consider
an ideal model with a trusted party who knows a function f over n inputs. Each of the n players
sends their input to this trusted party. This party then computes the function f over the inputs
and then sends the output to all the players. In MPC, we seek to get the same security guarantees
as in this ideal model, but without the trusted external party. In particular, we do not want to
leak any information about the inputs, besides what can be learned from the output of f . The
function f can be arbitrary; it can be: maxarg, min, a second-price auction bid computation, a
market-matching function that matches buyers to sellers based on bid and ask prices1, etc.

Basically, any computation that can be done with a trusted external party can be encapsulated
in the function f that is run by this external party over the inputs they receive. Then using secure
MPC, the players themselves can just compute f over their inputs, without need of the trusted
external party.

3 MPC vs Smart Contracts

MPC is related to but not the same as smart contracts. Some strengths of MPC when compared
to smart contracts:

• Enhanced privacy. In smart contracts, miners can manipulate transaction order for per-
sonal gain after observing all transactions sent out in the P2P network. This problem of
front-running and Minor Extractable Value (MEV) is both well-known [3, 4] and also wide-
spread [6]. This does not happen with MPC

• Computation via Participants. In smart contracts, contract computation is performed by
the miners, who may have different incentives than the participants in the contract (cf. the
Verifier’s Dilemma [5, 7]). In MPC the computation is done directly by the participants in
the smart-contract, whose incentives may be more directly aligned with correct computation
of the output.

Some weaknesses of MPC when compared to smart contracts:

• Connection to the Blockchain. Smart contracts directly connect to the blockchain, and
can immediately move cryptocurrency based on the contract output. In contrast, MPC only
computes the output of a function – some additional tools are needed to enable the MPC
computation to interact with the blockchain (see below).

1For example, as in the famous Beet Farmer auction [2]
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Based on the above strengths and weaknesses, MPC is often either (1) used within a smart-
contract [4]; or (2) along with time commitments, escrow accounts [1] and/or “sharded” digital
signatures. These tools enable MPC to interface with the underlying blockchain. Some example
applications of MPC in blockchains include:

• Lotteries [1]

• Decentralized Exchange (using private submitted bid and ask prices) [4]

• Collateral auctions (a Dutch auction of lending debts) [4]

4 Solving MPC

How can we solve the two millionaires problem? Consider a simple variant where Alice and Bob
both have two bits of input, i.e. these are the two most significant bits of their input net worth
value. So Alice’s secret inputs are s0, s1 and Bob’s secret inputs are t0, t1. First, we can write a
boolean formula that takes these s and t values as inputs and outputs TRUE iff Alice is at least
as rich as Bob. Then, we can convert this boolean formula into an arithmetic formula using just +
and ∗ over Z2.

First, a boolean formula is:

F (s1, s0, t1, t0) = (s1 ∧ ¬t1) ∨ [((s1 ∧ t1) ∨ (¬s1 ∧ ¬t1)) ∧ (s0 ∨ ¬t0)]

Next, we can convert this to an equivalent arithmetic expression in Z2 using the following rules:

• x ∧ y equals xy (i.e. x times y

• x ∨ y equals x+ y − xy

• ¬x equals 1− x

The above equations also work in any field like Zp for p any prime, provided that the inputs
are always either 0 or 1.2 This will be important later when we want roots of unity (which exist in
certain finite fields), in order to use the FFT.

When we do this with the above boolean formula, we get (from Gemini, not checked by me):

F (s1, s0, t1, t0) = s1t1 + s1s0t0 + s1t0 + t1s0t0 + t1t0 + t1 + s0t0 + t0 + 1

So then Alice and Bob want to compute the output of this arithmetic expression, which consists
of multiple sums and multiplications, without revealing any information about s or t. How do they
do it? First, they will compute shares of their inputs. Then they will perform operations over
these shares. If they can compute both sums and products over shares then they can compute any
function. As we’ll see below, computing sums will be easy. Computing products will be the hard
part.

Keep in mind that we’d eventually like to do this with an arbitrary number of players.

2What if we want to convert any non-zero input to 1 and keep the input 0 at 0? Hint: Fermat’s Little Theorem
can help!
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5 Computing 〈s+ t〉 via Shamir Secret Sharing

In Class Exercise. Say that there is a secret s = 3 and a secret t = 5 that is shared among Alice,
Bob and Carol using Shamir sharing with the following functions:

Let
s(x) = 2x2 + x+ 3

and
t(x) = x2 + 4x+ 5

Recall that the secret is the y-intercept of the functions, so s = 3 and t = 5. We say that A, B
and C hold the shares 〈s〉 and also the shares 〈t〉.

In particular, the three shares of each at the points −1, 1, 2 are

s(1) = 6, s(−1) = 4, s(2) = 13
t(1) = 10, t(−1) = 2, t(2) = 17

Now what if A, B, C add up their individual shares? Then, Alice, Bob and Carol will locally
compute: (s+ t)(1) = 16, (s+ t)(−1) = 6 and (s+ t)(2) = 30.

This gives them Shamir shares of the secret s+ t.
So, Alice, Bob and Carol can get 〈s + t〉 from adding 〈s〉 and 〈t〉. Critically, they can do this

without revealing any info about the secrets s and t

5.1 Some Questions

Here are some interesting questions about what Alice, Bob and Carol can compute shares of without
revealing the secrets s and t.

1. Can they get 〈10(s+ t)〉? If so, How? Hint: Think in terms of changing functions.

2. Can they get 〈1− 10(s+ t)〉? If so, How? Hint: Think in terms of changing functions.

3. Can they get 〈st〉?!? Does it work if they each just multiply si ∗ ti?

5.2 Additive Shares vs Shamir shares

OK so Shamir shares don’t make it easy to get shares of 〈st〉. Here’s another approach. What if
we use additive shares? Additive shares of a secret s are simply shares si over the n players such
that

󰁓
i si = s in the field. Additive shares are simpler than Shamir shares, and are sometimes

useful when Shamir shares are not. Later, we’ll be seeing how we can go back and forth between
these two types of shares efficiently using the Fast Fourier Transform (FFT).

But first, can we directly use additive shares to multiply without leaking information? If
s =

󰁓
i si and t =

󰁓
i ti, then st = (

󰁓
i si)(

󰁓
i ti) =

󰁓
i,j siti. So this doesn’t look good. It seems

that we’d need to have all players i and j exchange information in order to get all of these sitj
shares. So this fails.

But, as we’ll see below, there is a way we can use additive shares to multiply if we also make
use of what are called Beaver triples.
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5.3 Getting 〈st〉 using Beaver Triples

Imagine that our n players are given some addition shares to help them. In particular, they are
given 〈a〉, 〈b〉 and 〈ab〉 where a and b are random numbers. These 3 additional shares are called a
Beaver triple.

How do the players get them? Could be that they pre-compute a bunch of them every morning
before coffee. Could be somebody else supples them to the players “as a service”. We’ll talk later
about a way they can get them efficiently themselves on the fly by using an FFT-based algorithm.

But for now, let’s see how they could use them if they had them. First, let

• α = s− a

• β = t− b

Note that our friends can reveal α and β without revealing anything about s and t. Why?
Because a and b are random! So let’s have them do that so they all learn α and β. Then for each
player i, they can compute the following share

• ui ← βsi + αbi + ci

Then, we have

󰁛

i

ui =
󰁛

i

(βsi + αbi + ci)

=
󰁛

i

βsi +
󰁛

i

αbi +
󰁛

i

ci

= β
󰁛

i

si + α
󰁛

i

bi +
󰁛

i

ci

= βs+ αb+ ab

= (t− b)s+ (s− a)b+ ab

= st

So the set of all the ui then exactly equals 〈st〉. Moreover, they can be obtained without
revealing anything about the secrets s and t!

Critically, the above Beaver triple trick can also be used when all the secrets are shared via
Shamir shares. Just replace the sums in the above equations with interpolation of the polynomials.

This is important, because as we discussed in class Shamir shares are more robust than additive
shares. In particular, if we create n Shamir shares of a k < n degree polynomial, there is built-in
redundancy. So the final secret can be reconstructed even if n− k of the players drop out. Or for
k < n/2, we can even handle < n/2 Byzantine players who actively send out incorrect information.

6 How do we get Beaver Triples?

For decentralized finance, we’d like to be able to perform MPC when the number of players n is
very large: think “millions of millionaires”. In particular, we’d like the latency and the number of
message sent per player to scale sub-linearly with n. In fact, it’s better if these costs can be just
polylogarithmic in n.

How can we achieve this? Basically, we can use the FFT! TODO.
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