Final Examination

CS 561 Data Structures and Algorithms
Fall, 2016

Name:
Email:

- This exam lasts 2 hours. It is closed book and closed notes with no electronic devices. However, you are allowed 2 pages of cheat sheets.
- Show your work! You will not get full credit if we cannot figure out how you arrived at your answer.
- Write your solution in the space provided for the corresponding problem.
- If any question is unclear, ask for clarification.

Question	Points	Score	Grader
1	20		
2	20		
3	20		
4	20		
5	20		
Total	100		

1. Short Answer

Answer the following questions using simplest possible θ notation. Draw a box around your final answer. Briefly justify your answer where appropriate.
(a) Solution to the recurrence $T(n)=T(n-1)+n$ Solution: $\theta\left(n^{2}\right)$
(b) Solution to the recurrence $T(n)=2 T(n / 2)+\log n$ Solution: $\theta(n)$ by Master Method.
(c) Solution to the recurrence: $f(n)=3 f(n-1)-2 f(n-2)$. Solution: $\theta\left(2^{n}\right)$ or $\theta\left(c_{1} 2^{n}+c_{3}\right)$. Annihilator is $L^{2}-3 L+2=(L-2)(L-1)$.
(d) Suppose you have a hash function that hashes n items into an array of length \sqrt{n}. What is the expected number of items in the first bin? Solution: $\theta(\sqrt{n})$
(e) Suppose you have a hash function that hashes n items into an array of length n. What is the expected number of colliding pairs of items (asymptotically, as a function of n)? Solution: $\theta(n)$
(f) Runtime of fastest algorithm to solve the fractional knapsack problem over n items if each item has a value independent distributed uniformly between 0 and 1 , and a weight that is 1? Solution: $\theta(n)$ (use bucket sort!)
(g) What is the expected number of nodes at the $(1 / 2) \log n$ level of a skip list Solution: $\theta(\sqrt{n})$
(h) There is a function on a data structure with amortized cost $O(1)$, but worst case cost $O(n)$. If you call this function exactly 2 times on a newly initialized data structure, what is the worst case cost of the sum of those two calls? Solution: $O(1)$
(i) Your friend uses the Union-Find data structure to count the number of connected components in a graph $G=(V, E)$. First, they call Make-Set on every node. Then, they go through each edge (u, v) in E, and if $\operatorname{Find-Set(u)~does~not~equal~Find-Set(v),~they~}$ call Union on Find-Set(u) and Find-Set(v). Assume $|V|=n$ and $|E|=m$, that the amortized cost for all operations on the data structure is $O\left(\log ^{*} n\right)$ and that the worst case cost of any operation is $O(\log n)$. Then what is the worst case runtime of your friend's algorithm? Solution: $\theta\left((m+n) \log ^{*} n\right)$
(j) You have computed a max flow f in a network G with n nodes and m edges. What is the cost of the most efficient algorithm to now find a min s, t cut? Solution: Just use BFS or DFS to find S which equals all vertices reachable from s, and T which is all remaining vertices. This is the min s, t cut

2. Reductions and Induction

Show that the next two problems are NP-Hard via a reduction from one of the following problems: 3-SAT, VERTEX-COVER, INDEPENDENT-SET, 3-COLORABLE, HAMILTONIAN-CYCLE, or CLIQUE
(a) (5 points) Suspicious Group: There is a set of n attacks on a computer network. For each attack, there is some subset of m users who were active during that time. You want to find a suspicious group of k users such that for each attack, there was some user in the suspicious group active during that attack. Solution: Reduce from Vertex Cover
(b) (5 points) Diverse Subset There is a set of n customers, and a set of m items, where each customer has purchased some subset of the m items. For marketing purposes, you want to find a diverse subset of customers, S such that no two customers in S have bought the same product. In the Diverse Subset Problem, you are given an integer $k \leq n$ and want to determine if there is a diverse subset of k customers. Solution: Reduction from Independent Set.
(c) (5 points) Prove by induction that any tree over n nodes has $n-1$ edges for any $n \geq 1$. Don't forget to include the base case, inductive hypothesis and inductive step. Hint: For the inductive step, what do you get if you remove a leaf node from a tree over n nodes? Solution: BC: $n=1$. A tree with 1 node has 0 edges. IH: For $0 \leq j<n$, all trees over j nodes have $j-1$ edges. IS: Consider some tree, T with n nodes. Remove a leaf node to get a tree over $n-1$ nodes. By the I.H., this tree has $n-2$ edges. Hence T has $n-1$ edges
(d) (5 points) You have an unbounded supply of stamps with values v_{1}, v_{2}, v_{3} and a target value x. Give an algorithm to determine if it is possible to achieve the value x with your stamps. In particular, for any integer i, let $m(i)=1$ if it is possible to achieve value i with the stamps and 0 otherwise, and show how to compute $m(x)$. For example, if the stamps have values 3,6 , and 10 , then $m(17)=0$ and $m(29)=1$.
Solution: For all $j<0, m(j)=0, m(0)=1$. For all $j>0, m(j)=\max (m(j-$ $\left.v_{1}\right), m\left(j-v_{2}, m\left(j-v_{3}\right)\right)$.

3. Graph Escape

In the graph escape problem, you are given a directed graph $G=(V, E)$ along with a set of occupied vertices X, and a set of safe vertices Y. You want to find paths from every vertex in X to some vertex in Y such that none of these paths share an edge.
(a) (5 points) Describe an algorithm to solve this problem. Solution: Create a flow network where there is an edge from s to every node in X with capacity 1 , an edge from every node in Y to t with capacity ∞ and all other edges in G are given capacity 1 . We then ask if there is a flow with value $|X|$ in this network.
(b) (7 points) Now imagine the problem is changed so that none of the paths can share a node. Give an algorithm to solve this new escape problem.Solution: Create the same network as above, but replace every node $v \in V$ with two nodes v_{i} and v_{o}. For all directed edges $u \rightarrow v \in E$, create an edge $u_{o} \rightarrow v_{i}$ with capacity 1 .
(c) (8 points) Now imagine the escape starts at time 0 with a person at each vertex in X, and in every time step, a person must traverse some edge. You want to determine if there are paths for each person such that 1) no two paths traverse the same edge in the same time step; 2) all paths end at a safe vertex in Y; and 3) all paths end in at most $n=|V|$ time steps. Concisely describe an algorithm for this problem. Solution: Create $n+1$ copies of $G, G_{0}, \ldots G_{n}$. Add edges with capacity 1 from s to each vertex X in G_{0}. For each $u \rightarrow v$ in G, and for each $0 \leq i \leq n-1$, create edge of capacity 1 from u in G_{i} to v in G_{i+1}. Finally, create edges of infinite capacity from all vertices in Y in each copy G_{i} to t.

4. Parenthesis Puzzle

Consider a puzzle where you are trying to place parenthesis in a math formula in order to maximize the value. The formulas always contain positive numbers, and the two operators addition $(+)$ and multiplication (\cdot). For example, parenthesize $6+0 \cdot 6$, has solution $(6+0) \cdot 6=$ 36. Another example is that parenthesize: . $1+.1 \cdot .1$ has solution $.1+(.1 \cdot .1)=.11$.

In general, the input to your problem is $x_{0}, o_{0}, x_{1}, o_{1}, \ldots o_{n-1}, x_{n}$, where the x_{i} are positive numbers and the o_{i} are operators that are either addition or multiplication.
(a) (15 points) For $0 \leq i \leq j \leq n$, let $m(i, j)$ be the maximum value achievable by optimally parenthesizing the formula $x_{i}, o_{i}, \ldots, o_{j-1}, x_{j}$. Write a recurrence relation for $m(i, j)$. Don't forget the base case(s). Solution: $m(i, j)=\max _{i \leq k \leq j-1} m(i, k) o_{k} m(k+1, j)$, and $m(i, i)=x_{i}$
(b) (5 points) Briefly describe a dynamic program based on the above recurrence relation. What is the runtime of your program? Solution: Use a table, proceed by increasing length of substring. Keep pointers to value of k that achieves each optimal value. Runtime is $\theta\left(n^{3}\right)$

5. Challenge Problem

In the MAX-EDGE-COVER problem, you are given a graph $G=(V, E)$ and an integer k, and you want to find a set of k vertices that maximizes the number of covered edges in G. In this problem, you will develop an approximation algorithm for MAX-EDGE-COVER, based on a randomized rounding of a linear program (LP).
(a) (6 points) Write an integer program for MAX-EDGE-COVER. Hint: Create variables x_{i} for every every vertex, whose value depends on whether or not the vertex is in a cover, and additional variables z_{j} for every edge, whose value depends on whether or not the edge is covered. Solution: Maximize $\sum_{\ell} z_{\ell}$ subject to $x_{i}, z_{\ell} \in\{0,1\}$ for all vertices $i x_{i}$, and $\sum_{i} x_{i}$ Finally, for all edges ℓ between vertices i and j, there is a variable z_{ℓ} such that $z_{\ell} \leq x_{i}+x_{j}$ and $z_{\ell} \leq 1$.
(b) (8 points) Now consider a relaxation of your integer program above to a linear pro$\operatorname{gram}(\mathrm{LP})$, where the x_{i} variables can take on real numbers in the range 0 to 1 . Let x_{i}^{*} and z_{ℓ}^{*} be the solution found by the LP. For each vertex i, with probability x_{i}^{*}, include vertex i in the cover. Let OPT be the optimal max edge cover possible for G using k vertices. Give a good lower bound on the expected number of edges covered by your rounding. Hint: Recall the geometric/arithmetic mean inequality: $\sqrt{x y} \leq(1 / 2)(x+y)$. Solution: For each edge j, let Y_{ℓ} be a random variable that is 1 if the edge is covered in the rounding and 0 otherwise. Let the edge ℓ be between vertex i and vertex j. Then $E\left(Y_{\ell}\right)=1-\left(1-x_{i}\right)\left(1-x_{j}\right)=x_{i}+x_{j}-x_{i} x_{j} \geq x_{i}+x_{j}-1 / 4\left(x_{i}+x_{j}\right)^{2}$. Where the last step holds by geometric/arithmetic inequality. Then we have $x_{i}+x_{j}-1 / 4\left(x_{i}+x_{j}\right)^{2} \geq$ $z_{\ell}-1 / 4 z_{\ell}^{2} \geq 3 / 4 z_{\ell}$ where the last step holds since $z_{\ell}^{2} \leq z_{\ell}$. Finally, by the linearity of expectation, the expected number of edges covered is $\sum_{\ell}(3 / 4) z_{\ell}=(3 / 4) O P T$.
(c) (6 points) Imagine that in the solution to you LP, $\sum_{\ell} z_{\ell}^{*}=|E|$. After the randomized rounding described above, let X be a random variable giving the number of vertices included in your cover, and let Y be a random variable giving the number of edges covered. Show that with constant probability, $X \leq 2 k$ and $Y \geq|E| / 3$. Hint: Markov's inequality and Union bound.Solution: Let X be the number of vertices in the rounding. Then $E(X)=k$, and by Markov's inequality, $\operatorname{Pr}(X \geq 2 E(X)) \leq 1 / 2$. Next, let Z be the number of edges that are *not* covered. By the previous problem, $E(Z)=|E| / 4$, and so by Markov's, $\operatorname{Pr}(Z \geq(8 / 3) E(Z)) \leq 3 / 8$ (note that $(8 / 3)(|E| / 4)=(2 / 3)|E|$). Now by a Union bound, the probability that either of these bad events happen is no more than $1 / 2+3 / 8 \leq 7 / 8$.

