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1. Short Answer (2 points each)

Answer the following questions using the simplest possible asymptotic notation. Assume as
usual, that f(n) is Θ(1) for constant values of n.

(a) Expected run-time of randomized quick-sort when sorting a list of n items? Solution:
Θ(n log n)

(b) Solution to the recurrence T (n) = 2T (n/2) + n? Solution: Θ(n log n)

(c) Solution to the recurrence T (n) = 4T (n/2) + n2? Solution: Θ(n2 log n) by Master
Method.

(d) Solution to the recurrence: f(n) = 2f(n−1)+2n. Solution: Θ(n2n) or θ(c12
n+ c2n2

n).
Annihilator is (L− 2)2.

(e) In a union-find implementation with union by rank, but without path-compression, what
is the amortized cost of FIND-SET? Solution: Θ(log n)



(f) Expected number of nodes in a skip-list storing n data items? Solution: O(n)

(g) Time to compute the way to parenthesize a sequence of n matrices in order to minimize
the number of scalar multiplications? Solution: Θ(n3)

(h) You have a sequence of n lights, each of which is colored either red or green independently
with probability 1/2. A contiguous subsequence of lights is said to be monochromatic,
if all lights in the subsequence are the same color. What is the expected number of
monochromatic contiguous subsequences of length log2 n? Solution: (n− log n)(1/n) =
Θ(1)

(i) For this question only, give a number (not Θ notation). Consider the sequence of lights
in the last problem. Using Markov’s inequality, what is an upper bound on the proba-
bility that there are greater than or equal to 3n/4 red lights total? Solution: Let X =
number of red. Then E(X) = n/2, and Pr(X ≥ 3/2E(X)) ≤ 2/3.

(j) You throw n balls uniformly and independently into n5 bins. Using a union bound, what
is the probability that there is some subset of 2 balls that fall into the same bin?Solution:
Θ(n−3)



2. Induction and NP-Hardness

(a) (10 points) Prove by induction that the number of nodes in a binary tree of height h is
at most 2h+1 − 1. Don’t forget to include BC, IH and IS. (Recall that the height of a
rooted tree is the maximum number of edges in a path from the root to any leaf node).
Hint: Do induction on h. For the inductive step, what do you get if you remove the
root? Solution: BC: h = 0. There can be at most 1 node, which is at most 21 − 1 = 1.
IH: For all j < h, a binary tree of height j has at most 2j+1 − 1 nodes. IS: Consider a
binary tree of height h. Remove the root node to obtain at most 2 binary trees of height
at most h− 1. By the IH, the total number of nodes in each tree is at most 2h− 1. Thus
the total number of nodes in both trees is at most 2h+1−2. Adding the original root node
back in, we get that the number of nodes in the original tree is at most 2h+1 − 1.
GRADING: 2 points BC, 2 points correct IH, 6 points inductive step.



Show that the next problem is NP-Hard via a reduction from one of the following prob-
lems: 3-SAT, SET-COVER, VERTEX-COVER, INDEPENDENT-SET, 3-COLORABLE,
HAMILTONIAN-CYCLE, or CLIQUE

(b) (10 points) RADIO-TOWERS: You are given (1) a set S of towers; (2) a set T
of subsets of towers; and (3) a set of k radio frequencies. Can you assign exactly
one of k possible radio frequencies to each tower in such a way that each tower in
each set in T has a unique radio frequency? As an example, let S = {a, b, c, d},
T = {{a, b, c}, {a, d}, {a, b, d}, and k = 3. Then the answer is YES since we can as-
sign tower a frequency 1, tower b frequency 2, and towers c and d frequency 3, thereby
ensuring that each tower in each set in T has a unique frequency. Solution: Reduce from
3-COLORABLE. Nodes become towers, edges become conflicting subsets, k = 3.
GRADING: 2 points choosing correct problem to reduce from, 2 points correct setup and
direction of reduction; 2 points mapping nodes to towers; 2 points mapping edges to
conflicting subsets; 2 points k = 3



3. Dynamic Programming and Graphs

Given a list of n integers, v1 . . . vn, the product-sum is the largest sum that can be formed by
multiplying adjacent elements in the list. Each element can be multiplied with at most one of
its neighbors. For example, given the list 1, 2, 3, 1, the product sum is 8 = 1+ (2 · 3) + 1, and
given the list 2, 2, 1, 3, 2, 1, 2, 2, 1, 2 the product sum is 19 = (2·2)+1+(3·2)+1+(2·2)+1+2.

(a) (2 points) Compute the product-sum of 1, 4, 3, 2, 3, 4, 2. Solution: 29 = 1 + (4 · 3) +
2 + (3 · 4) + 2.

(b) (8 points) Let m(j) be the product sum for v1 . . . vj . Give the recurrence relation for
m(j). Solution: m(0) = 0, m(1) = v1, For all j ≥ 2, m(j) = max(m(j − 1) + vj,m(j −
2) + vj ∗ vj−1)
GRADING: 2 points correct base case(s), 2 points for recognizing the smaller subprob-
lems are m(j − 1) and m(j − 2), 4 remaining points for correct solution.



(c) (10 points) Let G = (V,E) be a directed graph with edge weights. Let k ≥ 0 be an
integer, and let s and t be vertices of V . Give an algorithm that finds the weight of the
maximum weight path from s to t using exactly k edges. If a path of k edges does not
exist from s to t, then return −∞. What is the runtime of your algorithm?
Hint: Let m(v, i) be the cost of the maximum weight path from s to v that uses exactly
i edges, and use dynamic programming. Solution: Use dynamic programming based on
the following recurrence. For integer 0 ≤ i ≤ k and vertex v, let m(v, i) be the most
expensive path from s to v using i edges. Then we have: m(s, 0) = 0; m(v, 0) = −∞ for
all v 6= s; and for 0 < i ≤ k, m(v, i) = maxu∈V,u 6=v,(u,v)∈Em(u, i − 1) + c(u, v). Return
m(k, t). Runtime is O(n2k).
GRADING: Any correct solution that is O(n2k) gets full credit. 2 points correct base
case(s); 2 points for the correct sub-problems. 2 points for correctly adding the edge costs
to the cost of the sub-problem; 2 points for correct recurrence relation and 2 points for
correct runtime.



4. Number-Guess

In each round of the Number-Guess problem, you try to guess a value close to an unknown
number in the range [0, 1]. In round i, you guess a value xi, and then the actual number vi is
revealed, and your cost for that round is (xi − vi)

2. You play T rounds, and want to be get a
total cost that is not too much higher that the best offline cost, OPT = minx

∑T
i=1(x− vi)

2.
You decide to use online gradient descent to do this.

(a) (2 points) What are the functions fi(xi) that you are minimizing in the online gradient
descent? Solution: fi(xi) = (xi − vi)

2

(b) (2 points) What is the gradient of fi(xi)? Solution: ∂fi
∂xi

= 2(xi − vi)

(c) (3 points) In one sentence, describe both the convex search space κ and D, the diameter
of κ? Solution: κ is the line segment [0, 1], D = 1.

(d) (3 points) What is G, the max value of |∇fi(x)|? over all i, 1 ≤ i ≤ T and all x ∈ κ?
Solution: G = 2



(e) (2 points) Recall that online gradient descent ensures that for any x∗ ∈ κ,

1

T

(

T
∑

i=1

fi(xi)−
T
∑

i=1

fi(x
∗)

)

≤ GD√
T

Based on this, give a bound on the total cost of your algorithm over all T rounds, as a
function of OPT and T only. Solution: OPT + 2

√
T

You now want to define a “hipster”-variant of Number-Guess, where the goal is to choose a
number in [0, 1] that is far from the hidden number in each round.1

(f) (2 point) Your (unhip) boss suggests, let OPT = minx∈[0,1] −∑T
i=1(x − vi)

2; and let
fi(xi) = −(xi − vi)

2, and then use online gradient descent to track OPT. In one short
sentence, state why this fails.Solution: fi is not convex!

(g) (6 points) Your (hip) barista is really into “underground” means, like the geometric

mean. He says to let OPT = minx∈[0,1] −
(

∏T
i=1(x− vi)

2
)1/T

, and then to define fi

functions in order to track some (monotonically increasing) function of this new OPT.
What are the fi functions you should now use? Hint: HW Problem.

Solution: The log function is concave and its negative is convex. Thus, we can let
fi(xi) = − log(xi − vi)

2. Then online gradient descent will track log of this new OPT.
(This is similar to the trick from the portfolio management problem in the hw.)
GRADING: 2 points for the idea of taking the negative of the log. 4 points for the correct
functions.

1For example, the hidden number is the location of the most-popular radio station on the FM dial, which you
want to avoid. (Although real hipsters probably only listen to AM radio:)



5. Challenge Problem

In the MAX-COLORING problem, you are given a graph G = (V,E). You must color each
node with one of 2 different colors. An edge is satisfied if its endpoints are colored differently.
Your goal is to find a coloring that maximizes the number of satisfied edges. In this problem,
you will develop an approximation algorithm for MAX-COLORING, based on a randomized
rounding of a linear program.

(a) (10 points) Write an integer program for MAX-COLORING. To do this, create vari-
ables xv for every every vertex, whose value depends on the color of the vertex. Create
additional variables ze for every edge e, whose value is 1 iff e is satisfied. Hint: The
ze constraints are the hard part - think about having two constraints for each edge
e = (u, v): the first ensures that ze is 0 when xu = xv = 0; the second ensures that
ze is 0 when xu = xv = 1. Solution: Maximize

∑

e ze subject to xv, ze ∈ {0, 1} for all
vertices v and edges e. For all edges e = (u, v) add the constraints: ze ≤ xu + xv and
ze ≤ (1− xu) + (1− xv).
GRADING: 2 points for the correct constraints on the xv and ze variables; 2 points for
correct maximization function; 3 points for each of the correct ze constraints.



(b) (2 points) Now consider a relaxation of your integer program to a linear program, where
the xv variables can take on real numbers in the range 0 to 1. Let x∗v and z∗e be the
settings of the variables in the solution found by the LP. Then, for each vertex v, with
probability x∗v color v with the color 1, otherwise color it 0.
For a fixed edge e = (u, v), what is the probability that e is satisfied as a function of x∗u
and x∗v? Solution: x∗u(1− x∗v) + (1− x∗u)x

∗
v

(c) (8 points) Now let OPT be the optimal solution to MAX-COLORING on G. Give a
good lower bound on the expected number of edges satisfied by the rounding. Solution:
For each edge e = (u, v), let Ye be a random variable that is 1 if the edge is satisfied
in the rounding and 0 otherwise. Then E(Ye) = x∗u(1 − x∗v) + (1 − x∗u)x

∗
v. By the LP,

z∗e ≤ x∗u + x∗v and ze ≤ (1− x∗u) + (1− x∗v). We now show that E(Ye) ≥ (1/4)z∗e always.
Case 1: x∗u ≥ 1/2 and x∗v ≥ 1/2. Then, E(Ye) ≥ 1/2((1 − x∗v) + (1− x∗u)) ≥ 1/2(z∗e ).
Case 2: x∗u ≤ 1/2 and x∗v ≤ 1/2. Then, E(Ye) ≥ 1/2(x∗v + x∗u) ≥ 1/2(z∗e ).
Case 3: x∗u ≤ 1/2 and x∗v ≥ 1/2. Thus, E(Ye) ≥ x∗u(1− x∗v) ≥ 1/4 ≥ (1/4)z∗e .
Case 4: x∗u ≥ 1/2 and x∗v ≤ 1/2 is symmetric to Case 3.
Finally, by linearity of expectation, the expected number of edges satisfied is at least
∑

e(1/4)z
∗
e = (1/4)OPT .

GRADING: 4 points for getting some bound on E(Ye). 4 points for getting that this is
at least ze/4, and thus that the total expectation is at least (1/4)OPT .


