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1. Short Answer (2 points each)

Answer the following questions using the simplest possible Θ notation, unless it specifies
otherwise. For recurrences, assume as usual, that f(n) is Θ(1) for constant values of n.

(a) Solution to the recurrence T (n) = T (n− 1) + n?

(b) Expected number of nodes in a skip list storing n items?

(c) Solution to the recurrence T (n) = 2T (n/2) + n2?

(d) Solution to the recurrence: f(n) = 2f(n− 1)− f(n− 2) + 1. Answer in big-O notation
here.

(e) Time to determine if a graph with n nodes and m edges has a 5-clique?



(f) A stack has standard push and pop operations, and also a popLessThan(x) operation
which repeatedly pops the top item off the stack until either the stack is empty or the
top item on the stack has value at least x. Over n calls to push, pop and popLessThan,
what is the worst case cost of any single call?

(g) In the problem above, what is the worst case amortized cost of any operation?

(h) Worst-case runtime of Kruskal’s algorithm when using a union-find data structure where
Make-Set, Find-Set and Union all have amortized cost O(log2 n)? Assume the graph has
n nodes and m edges.

(i) You have a graph G with m edges and n nodes. You color each node uniformly at
random with some color between 1 and n. What is the expected number of edges that
have both endpoints colored the same?

(j) What is the best expected time to solve the activity selection problem if the start and
finish times of all activities are selected independently and uniformly at random from
time 0 to some time T?



2. Recursion Cat You are given a tree with all nodes colored either red or black. Call a path
valid if at any step of the path, the number of red nodes visited so far is greater than or equal
to the number of black nodes visited so far. A cat starts at the root node of the tree and
wants to find a valid path to some leaf node.

For each node v, let f(v) be −∞ if there is no valid path to v. Otherwise, let f(v) be the
number of red nodes visited minus the number of black nodes for the path ending at v.

(a) (8 points) Give a recurrence relation for f . Hint: you may find it useful to let p(v) be
the parent of v, for every node v that is not the root.

(b) (2 points) Briefly describe a dynamic program that uses the recurrence above to return
a valid path from root to some leaf, if such a path exists.



(HARD/BONUS) Now recursion cat wants to find valid paths on any graph. Define a red
cycle to be a cycle that has more red than black nodes in it. Assume you are given a graph,
G, with no red cycles. For any pair of nodes, you want to determine if there is a valid path
from u to v. Taking inspiration from Floyd-Warshall, you first assign labels 1 to n to all n
nodes in the graph. Then you consider paths from nodes u to v that visit intermediate nodes
with label at most i. For a given path, let the black excess of that path be the maximum
over all steps of the path of the number of black nodes minus the number of red nodes at any
step. For example, a path of the form R,B,R,B,B,B,R,R has black excess of 2.

Define f(u, v, i, b) = −∞ if there is no path from u to v using intermediate nodes of label at
most i, with black excess at most b. Otherwise, define f(u, v, i, b) to be the maximum, over
all paths from u to v, with black excess at most b that visit intermediate nodes with label
at most i, of the number of red nodes minus the number of black nodes in that path. For
example, if the only path from u to v has form R,B,R,B,B,B,R,R, then f(u, v, n, 2) = 0.

(c) (8 points) Write a recurrence relation for f(u, v, i, b). It may help to assume that
−∞ + x = −∞ for any value x. Hint: Let the base case(s) be f(u, v, 0, b) for any
values of u, v and any b, 0 ≤ b ≤ n. It may help to define for a node v, color(v) to be 1
if the node is red, and -1 if the node is black.

(d) (2 points) Briefly describe a dynamic program that uses the recurrence above to deter-
mine if a valid path exists from u to v for every u and v. What is the runtime as a
function of n, the number of nodes, and m the number of edges?



3. MIN-INSIDE-EDGES In the MIN-INSIDE-EDGES problem, you are given a graph G =
(V,E), and a number x ≤ |V |, and you must choose a subset V ′ ⊆ V of size x. Call an edge in
E inside if both endpoints of the edge are nodes in V ′. Your goal is to output the minimum
number of inside edges for any set V ′ of size x.

(a) (6 points) Show that MIN-INSIDE-EDGES is NP-Hard by a reduction from one of the
following: 3-SAT, VERTEX-COVER, CLIQUE, SUBGRAPH-ISOMORPHISM, INDEPENDENT-
SET, 3-COLORABLE, HAMILTONIAN-CYCLE, or TSP.

(b) (8 points) Consider the randomized algorithm that picks a subset V ′ of size x, uniformly
at random from all subsets of V of size x, when given graph G = (V,E) and number x.
Compute the expected number of inside edges for this algorithm using indicator random
variables and linearity of expectation. Let n = |V | and m = |E|.



(c) (4 points) Let µ be the expected number of inside edges for the randomized algorithm
(i.e. your answer from part (b)). Now use Markov’s inequality to bound the probability
that there are greater than or equal to (11/10)µ inside edges after running the algorithm
in part (b).

(d) (4 points) Using your result from part (c), bound the expected number of times you
would need to run the randomized algorithm before you get a solution that has less
than (11/10)µ inside edges. Hint: Recall that for a random variable Y taking on positive
integer values, E(Y ) =

∑∞
i=1 Pr(Y ≥ i) (see slides 32-33 from our “Randomized Data

Structures” lecture).



4. Cake Cutting

After the holidays, you buy a large cake wholesale, and you want to cut it into smaller cakes
to resell for as much profit as possible. The original cake is a large rectangle that has width
m inches and height n inches. You want to cut this cake into smaller rectangles of various
integer dimensions, so as to maximize the total resale price of all rectangles. You have a
lookup array that tells you the resale price, P [x, y], of any x-inch by y-inch rectangle. The
resale prices are unusual, depending on aesthetics, customer demand, etc., so don’t make any
assumptions about them.

You can make horizontal or vertical cuts across any rectangle with your knife, but you must
cut all the way through the rectangle.

(20 points) Given integers m and n, and an array P , describe a dynamic program to compute
how to subdivide the original cake to maximize your profit. Be sure to include the following:

(a) An English description of the subproblems (e.g. “minimimum edit distance of first i
characters of string A and first j characters of string B” ).

(b) A mathematical description of the recurrence (e.g. “Base case(s): e(0,i) = i, e(j,0) = j;
Recurrence e(i,j) = min(e(i,j-1), e(i-1,j), e(i-1,j-1) + 1 - I(A[i]=B[j])”).

(c) How to compute the final answer using the recurrence (e.g. “Return e(m,n)”).

(d) How to solve the subproblems and analysis of your runtime (e.g. “Fill in a table left to
right, top down. Runtime is O(nm)”)



4. Cake Cutting, continued.



5. Gradient Descent

In this problem, you are trying to minimize your average commute time from a source node
s to a sink node t, over multiple days, where weights can vary from day to day due to traffic.
To start, assume there are exactly 4 disjoint paths from s to t. You must choose one path
each day, and after you have made your choice, the weight for each path for that day are
revealed. You decide to use online gradient descent as follows. For each day i and path j,
you let x⃗i be the probability distribution over the path for day i, i.e. x⃗i[j] is the probability
that you take path j on day i. Then let w⃗i be the weight vector revealed on day i, i.e. w⃗i[j]
is the weight of path j on day i. Your goal is to minimize your average expected weights of
the path you take over all days.

(a) (3 points) Let fi(x⃗i) be the cost function for day i. Write this out as a function of w⃗
and x⃗.

(b) (3 points) Define ∇fi(x⃗i), the gradient of fi.

(c) (3 points) Describe, algebraically, the convex search space κ. What is the diameter D
of κ?



(Hard) Now you want to generalize the previous problem to the case of choosing a route from
s to t in an directed acyclic graph (DAG), G = (V,E). On day i, you must choose a path
from s to t, and then you are given the weight values for all edges, i.e. you learn for all
(u → v) ∈ E, the value wi[(u → v)].

The number of paths from s to t can now be exponential in V , so you need a new approach.
You decide to let the x values specify probabilities on traversing each edge. In particular, for
each day i and edge (u → v), you set xi[(u → v)] to be the probability that you will traverse
edge (u → v) on day i. The figure gives example x values.

(d) (4 points) Describe the set of linear inequalities that define the convex search space κ
for this new problem.



(e) (4 points) Given the xi values, describe how you can use them to choose a path on day
i that has expected cost that equals

∑
(u→v)∈E xi[(u → v)]wi[(u → v)].

(f) (3 points) In class, we proved that the cost of online gradient descent tracks the cost of
the best offline solution, x∗. In particular, if OPT is the cost of the best offline solution,
then Zinkevich’s theorem tells us that the cost of our algorithm is at most OPT+

√
TDG.

But what is OPT here? For this problem, give a precise definition of OPT in terms of
the wi values, T , and the graph.


