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Abstract

We address the problem of designing a distributed algorithm for two robots
that sketches the boundary of an unknown shape. Critically, we assume
a certain amount of delay in how quickly our robots can react to external
feedback. In particular, when a robot moves, it commits to move along
path of length at least λ, or turn an amount of radians at least λ for some
positive λ ≤ 1/26, that is normalized based on a unit diameter shape. Then,
our algorithm outputs a polygon that is an ϵ-sketch, for ϵ = 8

√
λ, in the sense

that every point on the shape boundary is within distance ϵ of the output
polygon. Moreover, our costs are asymptotically optimal in two key criteria
for the robots: total distance travelled and total amount of rotation.

Additionally, we implement our algorithm, and illustrate its output on
some specific shapes.

Keywords:
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1. Introduction

What if a robot cannot react instantaneously? In particular, suppose
a robot alternates between (1) analyzing past sensor data in order to plan
motion of some minimum amount; and (2) executing that plan and gathering

Email addresses: varsha.dani@rit.edu (Varsha Dani), abir@cs.unm.edu (Abir
Islam), saia@cs.unm.edu (Jared Saia)

Preprint submitted to Theoretical Computer Science May 7, 2024



new data. Thus, some small, but finite time elapses between first sensing
data; and then planning motion.

Now imagine we want such robots to traverse the boundary of an unknown
shape in the Euclidean plane. The robots know nothing about the shape in
advance, and can only gather local information as they traverse the shape
boundary. If the boundary is a continuous curve, efficiently tracing the exact
boundary seems challenging. Instead, our goal is to obtain an ϵ-sketch: a
traversal curve with the property that every point in the actual boundary
is within distance ϵ of some point of the sketch; ϵ will be related to the
parameter giving the minimum amount a robot can move.

Finally, we want to obtain this ϵ-sketch “efficiently”. Unfortunately, for
most efficiency measures like time or energy usage, cost is a complicated
function of the path travelled, since it must account for both angular and
linear momentum. This makes it hard to devise an algorithm with provable
asymptotic bounds. Instead, prior work generally either provably optimizes
at most one parameter related to efficiency, such as amount turned Nguyen
et al. (2018), or distance travelled Tokekar et al. (2013).

In this paper, we take a different approach. Our goal is a bicriteria: min-
imize both (1) distance travelled, and (2) amount turned. Rather serendipi-
tously, we show that using 2 robots it is possible to asymptotically minimize
both criteria. This has broad implications for minimizing a large class of
efficiency measures. In particular, our algorithm is also asymptotically opti-
mal for any efficiency function that is polynomial in distance traveled and/or
amount turned.

Novelty of Result. The novelty of our results is thus three-fold. First,
we handle non-zero robot reaction time and also non-instantaneous sensor
measurements. Thus, we improve over control-theoretic results which assume
instantaneous reaction time, and instantaneous and continual measurements
of quantities such as boundary gradient Kemp et al. (2004); Marthaler and
Bertozzi (2004); Hsieh et al. (2008); Zhang and Leonard (2010), boundary
distance Matveev et al. (2013); Hoy (2013); Zhang and Haq (2008); Zhang
et al. (2004), or field measurements Al-Abri and Zhang (2021); Chatterjee
and Wu (2019, 2017). Second, we assume no a priori shape knowledge. Thus
we improve over “robotic coverage” results Choset (2001); Tokekar et al.
(2013); Nguyen et al. (2018), which assume a priori knowledge of the bound-
ary. Finally, we asymptotically optimize two key criteria: distance travelled
and amount turned. Thus, we improve over results Nguyen et al. (2018);
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Tokekar et al. (2013) that provably only optimize only one such criterion.

1.1. Problem Statement

We consider the problem of approximately traversing the boundary of an
unknown shape in the Euclidean plane, using two robots.

Problem Parameters. The diameter of the shape is normalized so that it is 1
unit. Our model depends critically on a parameter λ < 1/26, which describes
both the “smoothness” of the shape boundary and the reaction time of the
robots as described below.

The Robots. We make the following assumptions about the two robots.

• Every time a robot moves, it must commit to travelling a path that
has distance of at least λ, or turning at least λ radians.

• At any point in time, each robot knows its location and whether it is
inside or outside the shape. The robots are both initially located a
distance of at most

√
λ from the shape boundary.

• When a robot crosses the shape boundary, it learns the gradient at the
crossing point. 1

• The robots can instantaneously communicate with each other.

Our robot model can thus be seen as a variant of the synchronous, un-
bounded memory case of the Look-Compute-Move or OBLOT model, de-
scribed in Flocchini et al. (2019). Two key differences are: (1) our robots
“sense” during a cycle instead of “look” at the end of the cycle: they sense
when they have traversed the boundary and also sense the gradient at that
crossing point; and (2) our robots communicate via shared memory.

The Boundary. The boundary of the shape is a curvilinear polygon2, which
informally is a closed, non-intersecting loop consisting of a finite number
of curves, connected at vertices. Curvilinear polygons include all shapes
with boundaries whose gradients are continuous at all but a finite number

1A robot can consider the last gradient encountered in any path of length λ, so esti-
mation of the gradient at the crossing can be computed efficiently (Details in Section 4.1)

2 These terms are formally defined in Section 3.1 in Definition 5 and Definition 7
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of points; for example, shapes defined by unions of Gaussians and polygons.
They also seem to be the most general shape for which the total rotation of
the shape is well-defined.

We make the following additional assumptions about the shape boundary.

• The intersection of the boundary with any ball of a radius 4
√
λ centered

on a point of the boundary contains exactly one path component.2

• The vertices of the boundary are at least
√
λ distance apart from each

other.

• The boundary is twice continuously differentiable except at the vertices.

Our Goal. Our goal is to use the robots to estimate the boundary in the
form of an ϵ-sketch, while minimizing both distance travelled and the amount
turned by the robots.

1.2. Main Result

Our main result is given in the following theorem.

Theorem 1. For any positive λ < 1/26, there exists an algorithm that uses
2 robots to compute an ϵ-sketch of the boundary, for ϵ = 8

√
λ. Moreover

the algorithm requires the robots to travel a total distance and rotate a total
amount that are both asymptotically optimal.

As a corollary we can use this ϵ-sketch to estimate the area of the shape.

Corollary 1. Our algorithm can estimate the area of the shape up to an
additive error of O(ℓ

√
λ), where ℓ is the perimeter of the shape.

1.3. Technical Overview

We now give some intuition behind our algorithm and the proof of The-
orem 1.

BOUNDARY-SKETCH Intuition. Our algorithm works by trying to en-
sure a sandwich invariant : the robots are traveling in parallel lines on both
sides of the boundary. When a robot crosses the boundary, this invariant
fails since both robots are now on the same side of the shape. We want
the robot that crossed to go back to the other side of the shape in order to
reestablish the sandwich invariant. The subroutine CROSS-BOUNDARY
performs this function.
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Figure 1: Illustration ofBOUNDARY-SKETCH andCROSS-BOUNDARY. Red curve
indicates the shape boundary, blue and green curves indicate the trajectory of the robots
that sandwich the boundary. Notice that upon crossing, a dotted blue line (illustrating
CROSS-BOUNDARY) indicates a change in direction and step length as discussed in
this section.

The main idea in CROSS-BOUNDARY is to use the boundary gradient
learned at the crossing point, to guide the robot back to the other side of the
shape and reestablish the sandwich invariant. In CROSS-BOUNDARY,
the crossing robot successively takes small steps at a gradually increasing
offset from the gradient at the last crossing. The angular offset is in the
direction (clockwise or counterclockwise) of the shape boundary. Essentially
the robot travels a regular polygon that approximates a small circle, until
it crosses the boundary again. After the crossing, the robot reorients its
direction so that both robots are moving in parallel lines that sandwich the
boundary. See Figure 1. By repeatedly re-establishing the sandwich invariant
whenever it fails, BOUNDARY-SKETCH progressively computes an ϵ-
sketch of the boundary.

BOUNDARY-SKETCH Analysis. Our proof of correctness requires tools
from real analysis, differential geometry and topology. A main technical
challenge is the proof that BOUNDARY-SKETCH produces an ϵ sketch,
for ϵ = 8

√
λ. Key milestones in this proof include lemmas showing that the

sketch exists; it does not self-intersect; and that the sketch and the shape
boundary are “close”. We use proof by contradiction extensively to show
these results. In particular, we repeatedly construct balls of radius 4

√
λ that

violate the path component assumption unless our desired result holds.

Optimality of Distance Traversed. This part of the asymptotic analysis is
relatively straightforward. First, we claim when the sandwich invariant fails,
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the robots at the end of CROSS-BOUNDARY 1) either cover Ω(
√
λ) dis-

tance of the shape boundary or 2) traverse a small distance O(
√
λ) between

successive instances of Case 1 during a number of executions of CROSS-
BOUNDARY. This is proven in Lemma 15, which immediately shows that
since the former Case 1 occurs at most O(ℓ/

√
λ) times, the robots traverse

O(ℓ) distance to restore the sandwich invariant.
Second, the robots take the shortest path when the sandwich invariant

holds, since they move in a straight line parallel to each other, they also
traverse O(ℓ) distance in this case. The optimality of distance traversed
follows by combining these two facts.

Optimality of Rotation. To prove bounds on rotation, we need to introduce
additional formal definitions in Section 3.1, and develop a few helper lemmas
in Section 3.2. Our first main results is an application of Rolle’s Theorem
to show the existence, between any points x and y on the shape boundary,
of a tangent line somewhere on the boundary between these points that is
parallel to the line joining x and y (See Lemma 5). This result has multiple
applications including proving two key lemmas, Lemmas 9 and 19. These
lemmas were proven via a reduction from the problem for general shapes to
shapes that are a polygon. The case of a polygon is one that we can handle
easily in the first few lemmas in Sections 3.2 and 3.4.

Lemma 9 is our first key lemma about our unit-diameter shape. It states
that the perimeter of our shape is asymptotically bounded by the total “ro-
tation” in the boundary. In particular, it states that ℓ = O(ϕ), where ℓ is
the shape perimeter and ϕ is the boundary rotation, i.e. the total amount a
single robot would rotate if it could follow the shape boundary exactly.

The proof of Lemma 9, requires usage of the property of uniform conti-
nuity of the curvature (a fact that we prove using continuity of the curvature
along with some topological properties) to split the curve into a finite number
of segments, whose endpoints we define to be vertices of a certain polygon.
Next, to compare the perimeter of the shape against the perimeter of this
polygon, we borrow a key result in differential geometry from Dekster (1980)
stated as Lemma 6. This lemma from differential geometry compares the
path length of a curve with bounded curvature against the length of a line
segment connecting two endpoints of that curve, and shows that the former
is bounded by a constant times the latter. The other case of unbounded
curvature is easy to handle from the definition of total rotation in terms of
curvature.
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Finally, to compare the total rotation of the polygon against the total
rotation of the shape boundary, we recall Lemma 5, which says that the
shape has at least some point with a boundary gradient that is parallel to
the respective side of the polygon. Thus, the total rotation of the polygon is a
lower bound on the total rotation of the shape boundary. Thus, we conclude
that the shape boundary rotates at least as much as the constructed polygon
boundary.

Lemma 19 is another key lemma for bounding the robot rotation. Lemma 19
bounds the number of times the robots make a turn of

√
λ radians during

CROSS-BOUNDARY. Once again, we consider the case where the shape
boundary between crossings is a polygon first, and then apply Lemma 5 to
derive the asymptotics for the general case. Next, we multiply this bound
with the rotation angle

√
λ to bound the overall rotation during all executions

of CROSS-BOUNDARY.
Lemma 9 handles an intermediate step where total rotation duringCROSS-

BOUNDARY include the term ℓ and Lemma 19 handles the rest of the
analysis of CROSS-BOUNDARY. Together, these two lemmas prove the
optimality of rotation by the robots.

1.4. Related Work

Application Domains. Robot exploration of a shape is a long-standing
problem, which has exploded in popularity recently with the advent of drones
and other autonomous devices. Application domains are numerous, run-
ning the gamut from surveillance of: forest fires Casbeer et al. (2005, 2006);
harmful algae blooms Pettersson and Pozdnyakov (2012); mosquito popu-
lations Nguyen et al. (2018); Carrasco-Escobar et al. (2022); Stanton et al.
(2021); oil spills Fahad et al. (2015); Clark and Fierro (2005); radiation
leaks Bruemmer et al. (2002); and volcanic emissions Ericksen et al. (2022).

Boundary Search. Our algorithm assumes that the robots are initially
located close to the boundary. The boundary search problem instead requires
the robots to actually find the boundary. Many algorithms for boundary
search have been proposed, techniques used include: random walk Bruemmer
et al. (2002), spiral search Clark and Fierro (2005), gradient following Saldana
et al. (2015), and finite difference approximation based on partial differential
equations Marthaler and Bertozzi (2003).

Boundary Following. In boundary following, the goal is for the robots
to traverse the shape boundary, given that they all initially start close to
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the boundary. This is the problem addressed in our paper. Many control-
theoretic algorithms for boundary following offer provable guarantees that
their output converges to the exact boundary under certain assumptions on
the boundary shape. However, to the best of our knowledge all such results:
(1) assume instantaneous and continuous tracking of some quantity such
as boundary gradient or distance to boundary; (2) assume infinitesimally
accurate control of the robots; and (3) do not give asymptotic bounds on
robot travel time or energy expenditure.

Many such prior results use instantaneous and continuous gradient mea-
surements to control the robots tracking the boundary Kemp et al. (2004);
Marthaler and Bertozzi (2004); Hsieh et al. (2008); Zhang and Leonard
(2010). Some prior results depend on instantaneous and continuous measure-
ments of other quantities; for example, distance from the boundary Matveev
et al. (2013); Hoy (2013); Zhang and Haq (2008); Zhang et al. (2004); or field
measurements defining the shape Al-Abri and Zhang (2021); Chatterjee and
Wu (2019, 2017).

Robotic Coverage. In the robotic coverage problem, a robot must visit
within some given distance of every point in a target shape. Many variants
of this problem are known to be NP-Hard, even with a single robot. Thus,
many result either use approximation algorithms or heuristics to optimize
some criteria such as distance travelled Tokekar et al. (2013) or amount
turned Nguyen et al. (2018). See Choset (2001) for a general overview of
results. The problem has been extended to multiple robots Koenig et al.
(2001); Spears et al. (2006). Our problem is both easier and harder than the
typical robotic coverage problem. It is easier in that we only seek to cover a
1-dimensional boundary, and not a 2-dimensional shape. It is harder in that
it is online: no information about the shape is known in advance.

2. Our Algorithm: BOUNDARY-SKETCH

Our algorithm BOUNDARY-SKETCH is described in Algorithm 1. In
addition to its main subroutine CROSS-BOUNDARY, which is described
in Algorithm 3, the algorithms make use of GRADIENTDIRECTION and
SYNCHRONIZE which are described in Algorithms 2, 4. We assume an
auxiliary function incomplete that the robots are capable of, that checks if
they have completed a tour around the shape. In addition, by gradient at a
given point in this algorithm, we mean a vector with the direction tangent
to the shape boundary at the given point. Finally, an initial orientation
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(clockwise or counter-clockwise) should be selected by the user to determine
the direction to start tracing the boundary.

For simplicity of presentation our algorithms are described in a centralized
manner, without explicit communication. To parallelize our algorithms, the
robots use shared memory. For example, if a robot crosses the boundary
during some step, that information is shared with the other robot.

Algorithm 1 Initially, robots are
√
λ apart; one inside and one outside

1: procedure BOUNDARY-SKETCH(λ) ▷
2: D1, D2 ← the two robots
3: ∇ ← boundary gradient at point of crossing with line segment between
D1 and D2

4: α←
√
λ

5: while Incomplete(D1,D2) do
6: if inside (D1) XOR inside (D2) then
7: D1 and D2 both move λ distance in the direction of ∇
8: if inside (D1) = false and inside (D2) = false then
9: α←

√
λ

10: CROSS-BOUNDARY(D1, D2, α)
11: elseif inside (D1) = true and inside (D2) = true
12: α← −

√
λ

13: CROSS-BOUNDARY (D2, D1, α)
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t0

t1

t2
t3

t4

t5
t6

t7

t8

t9

Figure 2: A high level execution of the BOUNDARY-SKETCH, where the robots cross
the boundary over timestamps t0 through t9. Here CROSS-BOUNDARY is executed
whenever the sandwich invariant fails, in particular around timestamps t0, t2, t4, t6, t8. In
our formal problem model and analysis, γ denotes the parametrized shape boundary in
red and ζ1, ζ2 denote the parametrized path of the robots in blue and green.
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∇′

p

D1

Initial Orientation

Computed Orientation

Figure 3: A sample execution of GRADIENTDIRECTION. After computing the cross
product between the direction of D1 (arrowed green line) and ∇′ (arrowed yellow line),
the algorithm compares the orientation (counter clockwise) with the initial orientation of
the drones (clockwise), and decides to go clockwise from ∇′.

Algorithm 2 Finds the direction of the gradient at a given point p of inter-
section
1: procedure GRADIENTDIRECTION(p,D1, D2)
2: Orient ← inside (D1) XOR inside (D2)
3: Initial Orientation ← false
4: ∇′ ← Estimated normal vector to the gradient at p
5: Sign ← CrossProductSign (Direction vector of D1,∇′ ).
6: if Orient = Initial Orientation then
7: Orient ← inside (D1)

8: if Orient = Sign then
9: return ∇′ + π/2

10: else
11: return ∇′ − π/2
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Algorithm 3 Reestablishes “Sandwich” Invariant

1: procedure CROSS-BOUNDARY(D1, D2, α)
2: p← last position of D1 before crossing
3: R← the vertices of the regular polygon including D1’s position with

exterior angle
√
λ and the edge beginning at D1’s position facing the

direction of ∇+ α.
4: P ← the vertices of the convex hull of R ∪ {p}. For all i : 0 ≤ i ≤
|P | − 1, let Pi be the i-th vertex in this convex hull, ordered such that
P0 = p and P1 = D1’s current position.

5: ∇ ← gradient at the last boundary crossing of D1

6: i← 1.
7: while neither robot has crossed the boundary AND i+ 1 < |P | do
8: D1 moves to Pi+1.
9: D2 moves to closest point from it that is

√
λ distance away from

Pi and orthogonal to ∇+ iα
10: i← i+ 1

11: while neither robot has crossed the boundary do
12: D1 moves towards point p taking steps of length λ.
13: D2 moves to closest point from it that is

√
λ distance away from

D1 and orthogonal to D1’s direction.

14: if D2 crossed the boundary then
15: SYNCHRONIZE (D1, D2)
16: else
17: ∇ ← the current direction of D1.
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R

R

p

p

Figure 4: A high level execution of the CROSS-BOUNDARY subroutine, where the top
part indicates the execution of the Algorithm from lines 1 through 10 and the bottom part
the rest. Here a small regular polygon R is drawn and then a convex hull P is considered
from the vertices of R and the starting position p of the robot moving across the green
path. Upon crossing the boundary again, the subroutine SYNCHRONIZE is invoked (see
Figure 5)
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L1

L2

L1

L2

Path

Path

Figure 5: A sample execution of SYNCHRONIZE. Here dotted blue line indicates a seg-
ment of the Path of D2, with L1, L2 as indicated in the algorithm.

Algorithm 4 Ensures the robots are at distance
√
λ from each other and

are oriented in the same direction.
1: procedure SYNCHRONIZE(D1, D2)
2: Path ← the polyline path of D2 from last crossing of

BOUNDARY-SKETCH with the shape till current position.
3: ∇ ← the gradient at the last boundary crossing for D2.
4: L1 ← the line in the direction of ∇ through D1’s position.
5: L2 ← the line in the direction of ∇ through D2’s position.
6: if L1 crosses Path then
7: Move D2 in its current direction until it is

√
λ distance away from

L1. Change direction to ∇ and take a single step of length λ.
8: Move D1 along L1 until it is

√
λ away from D2.

9: else
10: Move D1 in its current direction until it is

√
λ distance away from

L2. Change direction to ∇ and move until the distance from D2 is
√
λ.

11: Swap (D1, D2).
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3. Analysis

In this section, we give the proof of Theorem 1, which assumes that the
diameter of the shape is normalized so that it is 1 unit. We divide the
analysis into four sections. First, we formalize the notions of curve, path
length and total rotations of a curve in our problem model. In addition, we
formally state in the language of topology what path and path component
means. The second section establishes some helper lemmas in computational
geometry that will be applied in the later sections. Next, we prove that
BOUNDARY-SKETCH terminates and outputs an ϵ-sketch of γ, where
ϵ = 8

√
λ. Finally, we provide asymptotic analysis ofBOUNDARY-SKETCH.

3.1. Formal Problem Model

The shape is represented by a curve in the Euclidean space. We make
use of several definitions, repeated below, about this curve from Pressley
(2012).

Definition 1. A point γ(t) of a parameterized curve γ is called a regular
point if γ′(t) ̸= 0; otherwise γ(t) is a singular point of γ. A curve is regular
if all of its points are regular.

Definition 2. A curve γ : [a, b] → R2 is called a unit-speed curve if for all
t ∈ [a, b], |γ′(t)| = 1.

The next claim which is Proposition 1.3.6 from Pressley (2012) relates
unit-speed parametrization of curves with regular curves.

Lemma 1. A parametrized curve has a unit-speed reparametrization if and
only if it is regular.

In what follows, we assume γ is regular unless otherwise stated.

Definition 3. The length of a curve γ : [a, b]→ R2 is defined as,

ℓ(γ) =

∫ b

a

|γ′(t)|dt

Definition 4. If γ is a unit-speed curve with parameter t, its curvature κ(t)
at the point γ(t) is defined to be |γ′′(t)|.

Next we generalize the notion of curve by allowing the possibility of cor-
ners. More precisely, we use the definition 13.2.1 from Pressley (2012).
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Definition 5. A curvilinear polygon in R2 is a continuous map γ : R→ R2

such that, for some real number T and some values 0 = t0 < t1 < ... < tn =
T :

1. γ(t) = γ(t′) if and only if t′ − t is an integer multiple of T .

2. γ is smooth on each of the open intervals (t0, t1), (t1, t2), ..., (tn−1, tn).

3. The one-sided derivatives,

γ′−(ti) = lim
t→t−i

γ(t)− γ(ti)
t− ti

, γ′+(ti) = lim
t→t+i

γ(t)− γ(ti)
t− ti

exist for all i = 1, ..., n and are non-zero and not parallel.

The points γ(ti) are called the vertices of the curvilinear polygon γ, and the
segments of it corresponding to the open intervals (ti−1, ti) are called its edges.
Here T is called the period of γ and if the curve has unit-speed i.e. |γ′(t)| = 1
for all t ∈ R, then the length of γ, denoted ℓ(γ) is T , which is the sum of the
length of its edges.

Definition 6. Given a curvilinear polygon γ with vertices at t0, t1, ..., tn ∈
[0, T ] where T is its period , let θ±i be the angles between γ′±(ti) and X-axis.
Define δi = θ+i − θ−i to be the external angle at the vertex γ(ti). The total
rotation of γ over the entire period T , denoted ϕ(γ), is defined to be,

ϕ(γ) =
n∑
i=1

δi +

∫ ℓ(γ)

0

|κ(t)|dt

where we set the speed of γ to be the unit speed.

We will use the following notational practice for simplicity, whenever we
mention ℓ, γ without specifying the curve in parenthesis, it means ℓ(γ), ϕ(γ)
where γ is the shape boundary, otherwise it refers to the curve in parenthesis.

Next, we state a couple of definitions from the Topology textbook of
Munkres (2000).

Definition 7. Given points x and y of a topological space X, a path in X
from x to y is a continuous map f : [a, b]→ X of some closed interval in the
real line into X, such that f(a) = x and f(b) = y. Furthermore, x, y ∈ X
are said to be path connected if there is a path from x to y. In addition,
define an equivalence relation between pairs x, y ∈ X if there is a path in X
from x to y. The equivalence classes are called the path components of X.
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Finally, we define ϵ-sketch.

Definition 8. For ϵ > 0 and a regular curvilinear polygon γ, we say a non
self-intersecting polygon P is an ϵ-sketch of γ if every point on γ lies at most
an ϵ distance away from P .

Next we begin the analysis with some helper lemmas.

3.2. Helper Lemmas

Lemma 2. ℓ is Ω(1)

Proof. Since the diameter of the shape is scaled to be 1, ℓ ≥ 1 and the lemma
follows.

Lemma 3. The number of vertices in γ is at most ℓ/
√
λ.

Proof. This is immediate from the assumption that each of the vertices are
at least

√
λ distance apart.

Lemma 4. If a curve γ is a polygon and ϕ is the total rotation of this polygon,
then ℓ(γ) ≤ ϕ.

Proof. Suppose the vertices of the polygon P are given by a list of n points
v1, v2, ..., vn. Then ℓ =

∑n
i=1 |vi − vi+1| where we set vn+1 = v1, vn+2 = v2.

Now fix three successive vertices, vi, vi+1, vi+2 for 1 ≤ i ≤ n and denote
them A,B,C respectively. In addition, let a = |AB|, b = |BC|, c = |CA|, α =
∠BAC, β = ∠ABC, ω = ∠BCA.

By the law of sines,

a

sinα
=

b

sin β
=

c

sinω
= 2ρ

where ρ is the radius of the circumcircle of the triangle ABC.
Since the polygon is bounded by a unit square, ρ ≤ 1. By the inequality

sinx ≤ x for all x ∈ R, we have,

a ≤ 2α

b ≤ 2β

Hence,
a+ b ≤ 2(α + β) = 2(π − ω) = 2ϕi
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where ϕi is the i-th exterior angle of P .
Summing over all i ∈ [1, n] we get,

2ℓ(γ) =
n∑
i=1

|vi − vi+1|+ |vi+1 − vi+2| ≤ 2
n∑
i=1

ϕi = 2ϕ

This implies,
ℓ(γ) ≤ ϕ

Lemma 5. Let γ : [0, L] → R2 be a regular curve parametrized by its arc
length L such that γ(0) ̸= γ(L). Then there exists c ∈ (0, L) such that γ′(c)
is parallel to the line segment joining γ(0) and γ(L).

Proof. Let γ(t) = (x(t), y(t)) for all t ∈ [0, L] where x, y are differentiable
single valued real functions defined over [0, L].

Let u be the vector from γ(0) to γ(L). That is,

u = γ(0)− γ(0) = (x(L)− x(0), y(L)− y(0))

Let v be a vector perpendicular to γ(L)− γ(0). Since, ⟨u, v⟩ = 0, we can
write,

v = (y(0)− y(L),−x(0) + x(L))

Now consider the function f defined as follows over [0, L],

f(t) = γ(t) · v = x(t)(y(0)− y(L)) + y(t)(x(L)− x(0))
Observe that, f(0) = f(L). Hence by Rolle’s theorem there exists c ∈

(0, L) such that, f ′(c) = 0. Since, for all t ∈ (0, L), f ′(t) = ⟨γ′(t), v⟩ +
⟨γ(t), v′⟩ = ⟨γ′(t), v⟩, we conclude, ⟨γ′(c), v⟩ = 0.

This means γ′(c) is perpendicular to v. Since u is perpendicular to v as
well, we conclude that, γ′(c) is parallel to u.

Next is a lemma found in the following simplified form (p. 272) in Dekster
(1980).

Lemma 6. Let γ be any parametrized curve in R2 and consider t1, t2 ∈
[0, ℓ(γ)]. For every real number K > 0, if the curvature of γ at every point
within [t1, t2] is not greater than K, then the length of γ over [t1, t2] is not
longer than the half the perimeter of a circle with radius 1/K where the end
points of its diameter are γ(t1), γ(t2).
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γ

γ(
t 1
)

γ(
t 2
)

Figure 6: Figure illustrating Lemma 6

Lemma 7. Let γ : [a, b] → R2 be a regular curve and κ : [a, b] → R be the
curvature function of γ. If |κ(t)| ≤ 1/π for all t ∈ [a, b], then∫ b

t=a

|γ′(t)|dt ≤ π|γ(b)− γ(a)|
2

Proof. Let A = γ(a), B = γ(b) and ρ = |γ(b) − γ(a)|. Now consider the
circle drawn from the midpoint of AB with radius ρ/2, where the curvature
at every point in this circle is 2/ρ. Since the shape has unit diameter, ρ ≤ 1.
In addition, we have for all t ∈ [a, b], |κ(t)| ≤ 1/π ≤ 2/ρ.

Setting K = 2/ρ, we get by Lemma 6,∫ b

a

|γ′(t)|dt ≤ πρ

2
=
π|γ(b)− γ(a)|

2

This completes the proof.

Next we recall a definition from real analysis.

Definition 9. A function f : X → Y with X ⊂ Rn and Y ⊂ Rm for
n,m ∈ N is called uniformly continuous on X if for every real number ϵ > 0,
there exists a natural number N such that for every x, y ∈ X,

|x− y| < 1/N =⇒ |f(x)− f(y)| < ϵ

We now state the following lemma that is a simplified form of Theorem
4.19 in Rudin (1976).
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Figure 7: Figure illustrating the proof for Lemma 9, where ℓ(AB), ℓ(CD), ℓ(EF ) indicate
the length of the shape (in red color) between the respective endpoints. The black line
segments are the sides of the polygon construction and the dotted blue lines indicate
the tangents parallel to the respective polygon sides. Here Case 1 is represented by the
segments BC,DE,FA while Case 2 is represented by the segments AB,CD,EF .

Lemma 8. Let f : [a, b]→ R be a continuous mapping with a, b ∈ R. Then
f is uniformly continuous on [a, b].

Lemma 9. Let γ be a curvilinear polygon in R2. Then ℓ(γ) is O(ϕ), where
ϕ is the total rotation of γ.

Proof. Partition into Segments:
Let γ be parametrized by its length, then its period T = ℓ. Suppose γ

has m vertices γ(d1), γ(d2), ..., γ(dm) where di ∈ [0, ℓ] for all i = 1, ...,m. We
also set dm+1 = d1.

Since [dj, dj+1] is closed and κ is continuous over [dj, dj+1], by Lemma 8,
κ is uniformly continuous over [dj, dj+1]. That means for all x, y ∈ [dj, dj+1]
and j ∈ [1,m] ∩ N, there exists n ∈ N such that,

|x− y| < (dj+1 − dj)/n =⇒ ||κ(x)| − |κ(y)|| ≤ |κ(x)− κ(y)| < 1

2π
(1)

We now partition each [dj, dj+1] into at most n segments of the form
[ak, bk] where ak = (k − 1)δj/n, bk = kδj/n, δj = dj+1 − dj for k ∈ [1, n] ∩ N.
Observe that, by inequality 1 for each of these segments [ak, bk], either for all
t ∈ [ak, bk], |κ(t)| ≥ 1

2π
or for all t ∈ [ak, bk], |κ(t)| ≤ 1/π. We denote these

cases by cases 1, 2 in their respective order.
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Finally, over the entire domain [0, T ] there are mn segments. Let these
segments be indexed by i and let ℓi and ϕi indicate the perimeter length and
the angle turned by the shape in the i-th segment [ai, bi].

Case 1:
Since for all t ∈ [ai, bi], |κ(t)| ≥ 1

2π
then,

ϕi =

∫ bi

ai

|κ(t)|dt ≥
∫ bi

ai

1

2π
dt

=⇒ ϕi ≥
1

2π
ℓi

=⇒ ℓi ≤ 2πϕi

Case 2:
Next we handle the other case where the segment [ai, bi] has the property

that for all t ∈ [ai, bi], |κ(t)| ≤ 1/π.
Let P be a polygon consisting of vertices equal to the endpoints of each

segment of the shape. For a fixed side of this polygon the endpoints are
γ(ai), γ(bi). Let ℓP be the perimeter length of P .

By Lemma 7, we have ℓi ≤ π|γ(bi)− γ(ai)|/2. Hence the total length of
the shape over all segments covered by these two cases is at most πℓP/2.

By Lemma 5, there exists a value c ∈ [ai, bi] such that γ′(c) is parallel to
γ(bi)− γ(ai).

Clearly then ϕ ≥ η where η is the sum of the exterior angles of P .
By Lemma 4, ℓP ≤ η. This means the length of the perimeter of the

shape over all the segments covered by this case is at most πϕ/2.
Conclusion:
Combining both cases gives ℓ(γ) ≤ 2πϕ i.e. ℓ(γ) = O(ϕ).

3.3. Correctness of BOUNDARY-SKETCH

Let ζ1, ζ2 be the parametrized curves for the path of the robots D1 and
D2 in BOUNDARY-SKETCH. Let ti ∈ [0, ℓ(γ)] such that γ(ti) is i-th
point of crossing of either robot with the boundary.

Lemma 10. The regular polygon constructed in Step 3 of Algorithm 3 has
diameter at most 2

√
λ.
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A C

B

∠ABC =
√
λ

|AC| = λ

Figure 8: The regular polygon R constructed in Algorithm 3 with side length λ and
exterior angle

√
λ

Proof. During Step 10 or Step 13, the regular polygon (see Figure 8) has
side length λ and exterior angle

√
λ. Applying the sine law, this polygon

has diameter λ
sin

√
λ
. By the inequality sin(2x) ≥ x for x ∈ [0, π/4] and since

0 <
√
λ < π/4, we have

λ

sin
√
λ
≤ 2
√
λ

Lemma 11. Suppose Algorithm 3 is invoked after crossing the shape for the
i-th time. Then γ(ti+1) is at most 3

√
λ distance away from the nearest robot

for all invocations of Algorithm 3. In addition, |γ(ti) − γ(ti+1)| ≤ 3
√
λ and

the nearest robot traverses no more than 3
√
λ distance during the execution

of Algorithm 3.

Proof. First we show that γ(ti+1) is at most 3
√
λ distance away for all invo-

cations of Algorithm 3. If γ(ti+1) is on the boundary of the regular polygon,
then it is at most 2

√
λ distance away by Lemma 10. Otherwise by triangle

inequality it is at most, 2
√
λ+λ < 3

√
λ distance away, where the first term is

the distance from last visited vertex to the starting vertex of the polygon and
the second term is the distance from the starting vertex to γ(ti), which are
bounded by the diameter of the regular polygon and step length respectively.

Furthermore, following the argument above, |γ(ti)− γ(ti+1)| ≤ 3
√
λ and

the nearest robot traverses no more than 3
√
λ.
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Lemma 12. During the While loop of Algorithm 1, BOUNDARY-SKETCH
maintains a distance of at most

√
λ between each of the robots and the shape

boundary throughout all executions of Step 7.

Proof. This is immediate from the assumption that the robots maintain a
distance of

√
λ between them and that the shape is sandwiched there.

Lemma 13. BOUNDARY-SKETCH maintains a distance of at most 8
√
λ

between the shape boundary and each of the robots.

Proof. By Lemma 12, throughout all executions of Step 7 inside the While
loop in Algorithm 1, every point of γ is at a distance of at most

√
λ from ζ1

and ζ2.
Suppose here Algorithm 3 is invoked after crossing the shape for the i-th

shape. We will show that over the interval [ti, ti+1], γ is always at most 7
√
λ

distance away from the nearest robot.
First by Lemma 11 γ(ti+1) is at most 3

√
λ distance away for all invoca-

tions of Algorithm 3. In addition, |γ(ti)− γ(ti+1)| ≤ 3
√
λ.

Now define d(x) = |γ(ti+1) − γ(x)| for all x ∈ [ti, ti+1]. We claim that
d(x) ≤ 4

√
λ for all x ∈ [ti, ti+1]. If not, consider a ball B of radius 4

√
λ

centered at γ(ti+1). Observe that the path from γ(ti) to γ(ti+1) must be
contained in B or else we will have two different sections that are disjoint
inside this ball. This contradicts our path component assumption.

That means we can get to γ(ti+1) first with at most 3
√
λ distance traversal

by Lemma 11 and then from γ(ti+1) to the respective point, which is at most
4
√
λ distance away by the above argument. Finally, noting that the robots

are apart by at most
√
λ distance and by triangle inequality, the lemma

follows.

Lemma 14. ζ1, ζ2 do not self-intersect.

Proof. We will prove this for ζ1, the proof is identical for ζ2.
Suppose there exists u, v such that ζ1(u) = ζ1(v) and u ̸= v.
Observe that, unless crossed γ is always on the same orientation (clock-

wise or counterclockwise) from D1 and opposite otherwise.
Without loss of generality, assume that γ was on the clockwise direction

of D1 at u. Note that ζ1(u) must be inside the shape or else it implies D1

selected the wrong orientation i.e. Algorithm 2 computed the wrong direction
of the gradient.
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Let L be the interval of γ with distance at most 2
√
λ from ζ1(u) on this

direction. By Lemma 12, L is nonempty.
Now consider for v an interval R of γ that is on the counterclockwise

direction from D1 at u and that the distance of every point in R from ζ1(u)
is at most 2

√
λ. By Lemma 12 R is nonempty.

Now consider the ball B centered at ζ1(u) with radius 2
√
λ. We now show

that the intersection of B with L and R are disjoint. If they are not disjoint,
they are path connected without crossing themselves, since the latter violates
the assumption that γ is a simple i.e. non self-intersecting curve.

If they are path connected, BOUNDARY-SKETCH crosses this path
since L and R are on different orientations (clockwise and counter-clockwise)
of ζ1(u). But since D1 upon crossing the shape, chooses to move with the
orientation computed by Algorithm 2, it must be that R is on the counter-
clockwise orientation of ζ1(v), a contradiction.

Therefore L and R must be disjoint. Finally, we pick any point c ∈ L and
consider a ball B1 of radius 4

√
λ centered at c. Observe that, L and R can

only be connected inside this ball in the same orientation, otherwise it will
imply the shape has a bounding box of side length O(

√
λ), which contradicts

our assumption that the λ is scaled with respect to the diameter of the shape
and is at most 1/26.

If L and R connects inside B1, consider the robot path going in the other
orientation. We can extend L and R in this orientation a distance of at most
8
√
λ until we can construct another ball B2 where L and R do not connect.

If this construction is not possible, one of the robots must have crossed the
boundary and we can construct this ball B2 with radius 4

√
λ centered at that

point of crossing, but this contradicts our assumption on path component.

Lemma 15. For each execution of Algorithm 4, the robots cover Ω(
√
λ)

distance of the shape boundary. In addition, the distance traversed by the
robots between successive executions of Algorithm 4 and during executions of
CROSS-BOUNDARY is O(

√
λ).

Proof. The first claim follows immediately since the robot that crosses the
boundary changes from D1 to D2 and the robots are

√
λ distance apart from

each other.
Next, between successive executions of Algorithm 4, robot D1 may cross

the boundary at the end of CROSS-BOUNDARY. The total number of
steps robot D1 can take over this period cannot be more than 2π/

√
λ since
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at each step it turns
√
λ and a total turn over a convex path is at most 2π.

Since each step is of length λ, the claim follows.

3.4. Asymptotic Analysis

Let ϕi be the angle the shape turns over [ti, ti+1] and f : N→ N such that
f(i) is the number of iterations the While loop inside Algorithm 3 executes
in between the robots crossing the shape boundary for the i and i + 1-th
time. We first analyze the case of a polygon.

3.4.1. γ as a polygon

Lemma 16. Let j > 1 be an index such that, after crossing the boundary at
point D (Figure 9), D1, D2 are both outside or D1, D2 are both inside. Then
the number of times the While loop in Step 7 of Algorithm 3 executes before
the robots cross the line DB is at most

ϕj−1√
λ

+ 1.

Proof. Define ψj to be the change of gradient in radians between γ(tj−1) and
γ(tj). Clearly, ϕj−1 ≥ ψj.

The vertical distance from the robot at the beginning of the execution of
Algorithm 3 to the line DB is at most λ sin(ψj +

√
λ).

Thus after
ψj√
λ
+ 1 ≤ ϕj−1√

λ
+ 1 steps, the robots will cross DB, which

concludes the proof.

Lemma 17. Suppose γ defines a polygon. Given an instance of crossing the
shape at a point D, let β be the first exterior angle of the shape continuing
from D. If β is the only exterior angle of γ from D to the next point of
crossing and

√
λ ≤ β ≤ π/8, then the While loop in Step 7 of Algorithm 3

executes at most 8β/
√
λ times to cover the distance from B to C.

Proof. Figure 9 illustrates this lemma where ∠BAC = β. Note that the
radius of the circumcircle of the triangle △ABC is at most the radius ρ of
the circumcircle of the regular polygon in the diagram indicated by dotted
lines. Given the exterior angle

√
λ and side length λ of the regular polygon,

the radius of the circumcircle is ρ = λ
2 sin(

√
λ)
. By Lemma 10, ρ ≤

√
λ.

Now by the law of sines, |BC|/ sin β = 2ρ and this implies |BC| ≤ 2β
√
λ.

Next, the angle β′ formed by the chord BC with the center of the regular
polygon is at most,

2 arcsin

(
2β sin(

√
λ)√

λ

)
≤ 2 arcsin(2β) ≤ 4β√

1− (2β)2
≤ 4β√

1− π2

16

≤ 8β
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Figure 9: Figure for Lemmas 16 and 17, the red color indicates the shape boundary, blue
color indicates path of the nearest robot, black colored segment is a construction for the
proof.

Next we multiply this angle with the radius to get the arc length between
B and C,

s = ρβ′ ≤ 8β
√
λ

Finally, noting that the arc length covered by every step of the robots
is at least λ, we get that after 8β/

√
λ steps from B the robots will cross

AC.

Lemma 18. If γ is a polygon and if for some i ≤ m,
√
λ ≤ ϕi ≤ π/8, then

f(i) ≤ 8ϕi√
λ
+ ϕi−1√

λ
+ 1.

Proof. The trivial case is where Algorithm 3 is not executed at all i.e. f(i) =
0.

Observe that the motion of the robots during the execution of Algorithm
3 forms part of the perimeter of a convex polygon with side lengths and
exterior angles being λ and

√
λ respectively (except for the first and last

sides).
Now suppose there are j vertices of γ defined over [ti, ti+1]. Let these

vertices be indexed γ(ak) where ak ∈ [ti, ti+1] for all k ∈ [1, j]. Finally, let βk
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be the exterior angle at γ(ak). By Lemma 16, there will be at most ϕi−1√
λ
+ 1

before the robot crosses the nearest side of the exterior angle at γ(a1).
Next, observe that by Lemma 17 the nearest robot to the shape will cross

one of the sides of the exterior angle at γ(ak) by at most 8βk/
√
λ iterations

of the While loop in Algorithm 3.
In addition, the shape boundary turns either in convex or concave manner.

If the turn at an index changes from convex to concave or concave to convex,
it may actually move the sides of γ closer for the robot and hence the amount
the angle βk contributes to the overall iterations run inside the While loop
of Algorithm 3 is at most 8βk/

√
λ. Therefore,

f(i) ≤
j∑

k=1

8
βk√
λ
+
ϕi−1√
λ

+ 1 =
8ϕi√
λ
+
ϕi−1√
λ

+ 1

3.4.2. γ as a curvilinear polygon

Lemma 19. If
√
λ ≤ ϕi ≤ π/8 for some positive integer i ≤ m, f(i) ≤

8ϕi√
λ
+ ϕi−1√

λ
+ 1.

Proof. The trivial case is where Algorithm 3 is not executed at all i.e. f(i) =
0.

Suppose there are j vertices of γ defined over [ti, ti+1]. Let these vertices
be indexed γ(ak) where ak ∈ (ti, ti+1) for all 1 ≤ k ≤ j. If j = 0, select a
value a1 = (ti+1 + ti)/2. In addition, let a0 = ti, aj+1 = ti+1.

By Lemma 5, for all 0 ≤ k ≤ j, there exists a ck ∈ (ak, ak+1) such that
γ′(ck) is parellel to the line segment joining γ(ak) and γ(ak+1). This means
if we consider a polygon P with j +1 vertices being γ(ak) for 0 ≤ k ≤ j, the
amount P rotates is at most the amount γ rotates over [ti, ti+1].

If ϕ′
i is the amount of rotation of P , then by Lemma 18,

f(i) ≤ 8ϕ′
i√
λ
+
ϕi−1√
λ

+ 1 ≤ 8ϕi√
λ
+
ϕi−1√
λ

+ 1

Lemma 20. If π/8 ≥ ϕi ≥
√
λ, after resetting ∇ in lines 15 or 17 of

Algorithm 3, the robots turn at most 8ϕi+ϕi−1+
√
λ as the algorithm continues

to execute Algorithm 1.
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Case 1 Case 2a Case 2b

Figure 10: Illustration of the three cases 1, 2a, 2b in the proof of Lemma 21

Proof. The angle the robot needs to turn to reorient itself with respect to the
boundary just crossed is at most 8ϕi+ϕi−1+

√
λ, since the robot orientation

itself is no more off than 8ϕi + ϕi−1 +
√
λ by Lemma 19.

Lemma 21. ζ1, ζ2 have finite periods and therefore they intersect the shape
finitely many times.

Proof. Note that during each execution of CROSS-BOUNDARY, since the
exterior angle of the polygon R is

√
λ, BOUNDARY-SKETCH turns at

least
√
λ. If ϕi >

π
8
during execution of Algorithm 3, BOUNDARY-SKETCH

turns at most 2π. Thus, the radians turned is bounded by 16ϕi. Next,
by Lemma 20, the indices i for which π/8 ≥ ϕi ≥

√
λ, BOUNDARY-

SKETCH lower bounds the total radians turned by the shape γ.
Since the total radians turned by γ overall is lower bounded by the amount

turned by the robots over these indices, the number of such indices must be
finite.

Now consider the indices i such that ϕi <
√
λ. In this case CROSS-

BOUNDARY will cross the boundary immediately after taking one step
after crossing the boundary on ti.

There are two cases, the robots sandwiched the boundary prior to crossing
on ti (Case 1) or they did not (Case 2).

Now we analyze the length of γ over [ti, ti+1] for these two cases.
Case 1: The length of γ over [ti, ti+1] is lower bounded by λ, since that is

the step length of the robots and they move in straight line in parallel while
the boundary does not (see Figure 10).

Case 2: We claim that the length of γ over [ti, ti+1] is once again lower
bounded by λ. To show this, first observe Case 2a where ifCROSS-BOUNDARY
is called again on ti then the robots cover

√
λ distance of γ since the bound-

ary has been crossed by both of the robots. The other Case 2b is reduced to a
similar situation as before (see Figure 10), where if we have successive indices
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i, i+ 1 for which ϕi, ϕi+1 are both less than
√
λ, the claim holds. Otherwise

we can include the index i among the count of indices with ϕi+1 ≥
√
λ.

Since the total length of γ is finite, the number of such indices is also
going to be finite.

Hence, CROSS-BOUNDARY is executed only finitely many times and
BOUNDARY-SKETCH terminates with ζ1, ζ2 having a finite period.

Lemma 22. Let I be those indices such that,
√
λ ≤ ϕi ≤ π/8 for i ∈ I.

Then the total radians turned by the algorithm for the ϕi values indexed by I
is O(ϕ).

Proof. Observe that,
∑

i∈I ϕi ≤ ϕ. In addition by Lemma 19 f(i) ≤ 8ϕi√
λ
+

ϕi−1√
λ
+ 1 and by Lemma 20 the angle turned after resetting ∇ in lines 15 or

17 in Algorithm 3 is at most 8ϕi + ϕi−1 +
√
λ.

Thus the total radians turned by the algorithm for the ϕi values indexed
by I is at most:

∑
i∈I

√
λf(i)+8ϕi+ϕi−1+

√
λ ≤

∑
i∈I

16ϕi+2ϕi−1+
√
λ = 16ϕ+ |I|

√
λ = O(ϕ)

where we note ϕi ≥
√
λ implies |I| = O(ϕ/

√
λ).

Lemma 23. BOUNDARY-SKETCH terminates with the output curves
ζ1, ζ2 which are 8

√
λ-sketches of γ.

Proof. This follows immediately from Lemmas 13, 14, 21 and Definition 8.

3.4.3. Lemmas about synchronization

Our final two lemmas show that the other robot do not rotate or traverse
asymptotically more than the robot nearest to the boundary. In addition,
we discuss briefly the synchronization steps in Algorithm 4.

Observe that in Figure 11, after reorientating itself to the curve gradient
direction, the green and blue curves can become “closer” to each other if
they simply turn towards the gradient. This is handled by letting the blue
or green curve based robot traverse a little longer, in particular greater than√
λ−λ > λ distance and then turn. This synchronization that maintains the
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Figure 11: Illustration of the two cases in SYNCHRONIZE.

A

C

B

D

E
F

Figure 12: Figure for Lemmas 24 and 25
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distance of
√
λ between the two robots guarantees that between successive

executions of Algorithm 4, the robots will cover Ω(
√
λ) distance of the shape

boundary, in turn we are able to prove Lemma 15.

Lemma 24. For each execution of Algorithm 3, D2 traverses a distance of
O(
√
λ).

Proof. In Figure 12, the line segment AC describes the path of D1 and D2

can move either directly from B to D or B to D via E. Now, by Algorithm 3
description, |AC| = |DE| = λ. Note that, ∠BAE =

√
λ and |BA| = |AE| =√

λ. Thus by the law of sine, |EB|
sin

√
λ
=

√
λ

sin((π−
√
λ)/2)

Hence,

|EB| ≤ λ

cos(
√
λ/2)

≤ 2λ

. Thus, the path length of D2 at each step is at most 3λ.
In the last step independent of which robot encountered the shape bound-

ary and whether they are both inside or outside or one inside and one outside,
D2 will traverse at most a constant factor of

√
λ by the above discussion based

on Figure 11. Finally, noting that D1 traverses O(
√
λ) distance according to

lemma 11, D2 traverses O(
√
λ) during each execution of Algorithm 3.

Lemma 25. For each execution of Algorithm 3, D2 does not rotate asymp-
totically more than D1.

Proof. We only need to check that the rotation of the green path towards
BE and then ED is asymptotically bounded by D1’s rotation. For brevity,
we simply note this follows by elementary euclidean geometric comparison of
various angles, beginning from the rotation of the blue path to AC.

Finally, in the last step, both robots turn towards a common direction
i.e. gradient at a point of crossing the boundary.

3.4.4. Proof of the main theorems

Theorem 2. The robots in BOUNDARY-SKETCH traverse a total dis-
tance of O(ℓ).

Proof. During Step 7 of Algorithm 1, the robots take the shortest path and
thus the distance traversed is bounded by the shape perimeter. Hence overall
the total distance traversed during execution of Step 7 is O(ℓ).
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Now each time Algorithm 4 is executed, the robots cover at least Ω(
√
λ)

distance of the shape boundary. This means Algorithm 4 is executed at most
O(ℓ/

√
λ) times. In addition, between successive executions of Algorithm

4 and during executions of CROSS-BOUNDARY the robots traverse a
distance at most O(

√
λ) by Lemma 15.

Combining we have that ℓ(ζ1) and ℓ(ζ2) are both O(ℓ).

Theorem 3. The total rotation by the robots in BOUNDARY-SKETCH
is O(ϕ).

Proof. The number of indices i ≤ m such that ϕi ≤
√
λ is O(ℓ/λ). For each

of these indices, the robots rotate O(λ) angle in CROSS-BOUNDARY by
Lemma 16. Since ℓ = O(ϕ), for these indices the robots rotate O(ϕ).

Now, if π/8 ≥ ϕi ≥
√
λ, by Lemma 22, the robots rotate a total of O(ϕ)

radians.
If ϕi >

π
8
during execution of Algorithm 3, BOUNDARY-SKETCH

turns at most 2π. Thus, the radians turned is bounded by 16ϕi. In total,
across all iterations of Algorithm 3 where ϕi >

π
8
, the robots rotate at most

16ϕ.
In addition, by Lemma 25, the robots asymptotically rotate the same.
Finally, during execution of Step 7 the robots do not rotate at all. Com-

bining all of the above, we have the theorem.

Corollary 2. The area estimated by BOUNDARY-SKETCH differs from
the actual shape area by O(ℓ

√
λ).

Proof. BOUNDARY-SKETCH computes the area of the polygon gener-
ated by successive positions of one of the robots (say the one that starts from
the inside). By Lemma 13, this polygon stays within at most 8

√
λ distance

from the shape boundary. Hence, the area of the polygon differs from the
shape area by at most O(ℓ

√
λ).

4. Implementation Guide and Simulations

4.1. Implementation Guide

BOUNDARY-SKETCH is largely agnostic to specific details of its im-
plementation. However, below we make a few suggestions with regards to i)
representation of the boundary in practice ii) computation of the gradient
iii) possible laws governing the motion of the robots.
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4.1.1. Representation of the boundary

Analytically, we have used the formal language of curvilinear polygon
from differential geometry. In practice, any representation can be used that
can be mapped to our analytical representation. For example, we can define
γ to be any level contour of a surface given by f : R2 → R. By setting a
value k, the implicit equation f(x, y) = k then determines γ. In addition, the
robots D1, D2 can make use of some kind of sensor to measure or estimate
the value of f at a given point, which allows them assess if they are inside
(e.g. when f(x, y) > k) or outside (e.g. when f(x, y) < k) of the boundary.

4.1.2. Computation of the gradient

Our algorithm BOUNDARY-SKETCH assumes an oracle access to the
gradient. We acknowledge in practice this might be inhibiting. However, we
present a suggestion below how one might estimate the gradient using Least
Squares (LSQ) Error formulation.

Least Squares Error Formulation.. Assume we have three points a, b, c that
are close together, and that we have the values f(a),f(b),f(c). For the sake of
theBOUNDARY-SKETCH, these three points can be said to be successive
points of a robot’s path with the middle one being where it crosses the shape
boundary. Then we estimate the vector (∇′ in Algorithm 2) normal to the
gradient ∇f(b) = (x′, y′) as a vector that minimizes the following sum:

(f(a)− f(b)−∇f(b) · (a− b))2 + (f(c)− f(b)−∇f(b) · (c− b))2

Setting the rows of a 2×2 matrix A to be a−b, c−b respectively and the
entries of vector β to be f(a)− f(b), f(c)− f(b) respectively, this problem is
formally solving for the vector v such that, |Av − β|2 is smallest.

Finally, we utilize the pseudo-inverse method for solving LSQ as discussed
in numerous sources e.g. in Section 4.5 of Goodfellow et al. (2016).

4.1.3. Motion of the robots

BOUNDARY-SKETCH is additionally agnostic to laws governing the
motion of the robots. However, a real-world application domain of particular
interest to us is tracing boundaries of volcanic CO2 plumes using drones. In
that case, control laws govern the motion of the drones which can be mapped
to the various actions necessary in the algorithm, in particular turning a
certain angle, moving in tandem and the synchronization steps in Algorithm
4.
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Finally, CO2 plumes can be represented by a function f : R2 → R where
f(x, y) is the CO2 measurement at point (x, y) and sensors can be used to
estimate f(x, y), thus effectively determining whether a robot is inside or
outside.

4.2. Simulations

We present preliminary simulation results (with GitHub source code Islam
(2023)) to illustrate the precision of ϵ-sketch for various values of λ. These
simulations specifically do not perform any physical motion of the robots.
However, they do estimate the gradient instead of assuming a perfect oracle
access.

To start with, we tested our algorithm for a small number of intersect-
ing gaussians with different variances. Next, we test our algorithm on the
boundary of shapes drawn from real world shape data. Both of these sim-
ulations demonstrate encouraging convergence of ϵ-sketch to the shape as λ
decreases.

4.2.1. Intersecting Gaussians

In our experiments, the shape is an intersection of a few two dimensional
gaussians.

Definition 10. In two dimensions, the elliptical gaussian function f for
uncorrelated varieties X and Y having a bivariate normal distribution and
standard deviations σx, σy is defined to be,

f(x, y) =
1

2πσxσy
e
−[

(x−σx)2

(2σx)2
+

(y−σy)2

(2σy)2]

To estimate the gradient at a point of intersection, we used the least
squares error (LSQ) problem as suggested above.

Test shape.. We generate a test shape in MATLAB with four gaussians with
centers (1, 1), (−2, 0), (1, 0), (4, 0) and corresponding standard deviations

(0.8, 0.8), (1, 1), (1.2, 1.2), (0.7, 0.7).

We also ignore the 1/2π factor in front of the definition.

BOUNDARY-SKETCH for different λ. For the same shape as above,
we run BOUNDARY-SKETCH for λ values of 0.0001, 0.000025, 0.000001.
Figure 13 illustrates the output for λ = 0.0001 and the other two figures 14,
15 demonstrate notable improvement in precision as λ gets smaller.
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Figure 13: BOUNDARY-SKETCH for λ = 0.0001, the green border marks the shape
boundary sandwiched by the inner and outer robots.
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Figure 14: BOUNDARY-SKETCH for λ = 0.000025, the green border marks the shape
boundary sandwiched by the inner and outer robots.
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Figure 15: BOUNDARY-SKETCH for λ = 0.000001, the green border marks the shape
boundary sandwiched by the inner and outer robots.
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Figure 16: Volcanic plume in La Palma observed on September 20, 2021.

4.2.2. Real world plume shapes

We also utilize a real world shape from a volcanic plume in La Palma (see
Figure 16) and use a Python program to generate a polytope approximation
of it. The gradient of the boundary then is easily found by the gradient of the
corresponding side of the polygon. Next we ran BOUNDARY-SKETCH
for different values of λ on this shape. Figure 17 illustrates the output of the
algorithm and figures 18, 19 demonstrate notable improvement once again in
precision as λ gets smaller.
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Figure 17: BOUNDARY-SKETCH for λ = 0.0001, the green border marks the shape
boundary sandwiched by the inner and outer robots (red and blue border).
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Figure 18: BOUNDARY-SKETCH for λ = 0.000025, the green border marks the shape
boundary sandwiched by the inner and outer robots (red and blue border).
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Figure 19: BOUNDARY-SKETCH for λ = 0.000001, the green border marks the shape
boundary sandwiched by the inner and outer robots (red and blue border).
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5. Conclusion

We have described a distributed algorithm to enable two robots to traverse
the perimeter of a curvilinear polygon. Our algorithm is novel in three key
ways. First, it does not assume that the robots can respond instantaneously
to sensor data, instead assuming a minimum amount of movement or rotation
occurs between motion planning events. Second, it does not assume that the
robots have access to instantaneous and continual sensor readings. Finally,
our algorithm is simultaneously asymptotically optimal in two criteria: both
total distance travelled by the robots, and also total amount turned by the
robots.

Several open problems remain including the following. First, lower bounds:
even though our algorithm is asymptotically optimal in both distance trav-
elled and distance turned, we still would like to know if 2 robots are strictly
necessary. Can a single robot achieve the same asymptotic results? We con-
jecture the answer is no, even if the single robot is attempting to follow a
(unknown) function in the Euclidean plane defined from the values x = 0 to
x = 1. Second, Can we reduce the value of ϵ in the ϵ-sketch returned by our
algorithm? In particular, is it possible to obtain a value of ϵ that is o(

√
λ)?

Finally, How does our algorithm perform when deployed in the real world?
An application domain of particular interest is tracing boundaries of volcanic
CO2 plumes. We are currently adapting BOUNDARY-SKETCH for this
domain and expect to publish our results in the near future.
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