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In this paper, we present a comprehensive study in which a 2D cellular au-
tomata model is created which is evolved using a genetic algorithm. Cellular
automata (CAs) are spatially-extended discrete dynamical systems which has
many desirable features for large class of computation [? ]. Our CA model is
tailored to mimic the famous forest �re behavior in presence of lightening
strike. Some other properties like multiple species of trees and presence
of �re�ghters are introduced in our model. We analyzed our simulation
results in detailed manner with and without these properties and observed
many interesting behavioral pa�erns in the forest �re model. �e resultant
behavior of the model is used to explain relationships among evolving forest
growth, forest biomass, longevity and �re-�ghters’ role on the overall model.
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1 INTRODUCTION
Cellular Automata (CAs) are examples of mathematical systems con-
structed from many identical components,each simple, but together
capable of complex behavior [? ]. As cellular automata is a com-
plex pa�ern itself, it is able to analyze dynamical and information
processing systems and widely used in parallel computations. In
1940, Cellular Automata was invented by John von Neumann and
described in [? ] as equivalent to universal turing machine [? ]. CAs
are used in performing complex computation in di�erent sectors of
science. In this paper, we emphasize on using Genetic Algorithms
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(GA) to evolve a 2D Cellular Automata that behaves like a famous
dynamical model called Forest-Fire Model. In this model, each cell is
either empty or occupied with a tree which represent the whole 2D
la�ice as a forest with presence of lighting that causes �re. In this
paper we will observe the evolution of forest growth under di�erent
parameters.
�e paper demonstrates the behavior of the forest growth with

the presence of lighting strike probability that burns the trees. �e
genetic algorithm is used to achieve the evolving growth rate of the
forest. �e parameters such as multiple tree species and presence of
�re-�ghters e�ect the forest growth which is analyzed in section 4.
�e paper also shows computations that are performed to calculate
relationship among factors such as: forest biomass, forest longevity,
evolved growth rate and the amount of �re suppressions. �ese
factors are described in a detailed manner in section 3.

2 RELATED WORK
In this section, we will review some previous works related to Cel-
lular automata, use of genetic algorithms to evolve CAs to perform
calculations and the famous forest-�re model.

Although John von Neumann invented CA, however, his rule was
somehow complicated [? ]. In 1970, British Mathematician John
Conway invented his famous model Game of Life [? ] where he
used two-state cellular automataa which evolved a with set of rules
and initial conditions. It was capable of universal computation [? ].
In the early 1980s, Stephen Wolfram started working with CA

and its pa�ern and discussed some universal features and general
properties of the pa�ern of CA [? ]. He showed that for di�erent
initial conditions any CA can yield into one of four classes. All the
pa�erns of CAs fall in these four classes. Wolfram and gis colleagues
also developed a programming language called Mathematica to
simulate cellular automata [? ].

In 1989, Meyer et al. developed a genetic algorithm to build a cel-
lular automaton that may be used for forecasting or for regenerating
global spatial pa�erns [? ]. Since then scientists have worked on
several methods to design rules of cellular automata using genetic
algorithms. Genetic algorithms are a search method that can be used
for both solving problems and modeling evolutionary systems. [? ].
In 1994, Mitchell et al. published a detailed result from experiments
where genetic algorithm was used to evolve computationally useful
CAs and described mechanism by which GAs can create complex
global behavior in a system consisting of many simple parts [? ].

Forest-�remodel can be considered as a 2D cellular automata with
a set of prede�ned rules and initial conditions. Forest-�re model
was used to demonstrate critical scaling behavior in a turbulent
non-equilibrium system in [? ]. Many people have worked on the
modeling of forest-�re using cellular automata and also genetic
algorithm [? ], [? ], [? ]. It has many applications like parallel
processing and decision support system [? ]. We can �nd the basic
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implementation and simulation of the forest-�re model in almost
all of the programing languages1.

3 METHODS
In this section, the methods of the implementation of the 2D cel-
lular automata in respect of Forest �re model is discussed. �e
approaches of how the model of forest growth evolved using dif-
ferent parameters of Genetic algorithm as well as the process of
introducing multiple tree species and concept of �re-�ghters are
described in detailed manner.

3.1 Forest Fire model
�e model consists of 2 dimensional cellular automata that is a
spatial la�ice of 250 by 250 (in total 62500) cells. At each time step,
each of these cells is in one of 3 states: �re, tree, empty. For the
growth of the trees there is a probability p. Using the growth rate
there is probability to grow tree in an empty cell. �e �re occurs
in the forest by an independent probability f which is referred as a
lightening strike that hits the cell. When a cell with a tree is hit by
the lightening, it catches on �re. �e �re spreads to adjacent cells
in every time step according to the law of Moore Neighborhood 2.
Trees e�ected with �re are converted to empty cell in the next time
step. In this CA, each cell follows these set of rules for updating its
status in every time step. �erefore, the state of each cell at time
step t +1 depends on its own state and the state of eight neighboring
cells at time t [? ].
�e growth rate of the forest is evolved using a simple genetic

algorithm. For the GA, we are considering the growth rate probabil-
ity as the genome and creating a population of 20 genes. �e �rst
set of population is generated randomly from the range of 0.0 to 1.0.
Two �tness functions were considered for the GA; Longevity and
Biomass. Longevity 3 is de�ned to be the time till all cells are empty.
Biomass4 is the percentage of cells that are occupied by trees. Aver-
age biomass is calculated over the CA lifetime. For the evolution of
the population we used Random selection and mutation operator
in our GA. Selection methods are used in GA to choose an optimal
set of parents to produce the next generation based on their �tness
score. In the random selection, the population of growth rates are
sorted according to their �tness score. �e population selected to
create the next generation was chosen by replacing the lower half
of the population with randomly selected warriors from the top
half. For the mutation operator, we used 0.5% mutation rate for
the diversity in population. In mutation, we randomly changed the
growth rate of a gene and computed the �tness. Here two individu-
als with highest �tness function values are remained unchanged for
maintaining elitism in GA. Every gene in the population is iterated
for 5000 time steps for the �tness evaluations.

3.2 Fire-fighters
In our model, we have introduced the concept of �re-�ghters who
work on stopping the �re to spread in the trees. �e �re-�ghters
extinguish the cells in �re and transform them to cells with trees in
1h�p://rose�acode.org/wiki/Forest �re
2h�p://mathworld.wolfram.com/MooreNeighborhood.html
3h�p://cs.unm.edu/ mfricke/CS523 2017spring/Projects/Project3/Assignment.pdf
4h�p://cs.unm.edu/ mfricke/CS523 2017spring/Projects/Project3/Assignment.pdf

the next time step. In the presence ofn �re-�ghters we are creating a
random list of n cells with �re state and turning them into tree state.
0 to 1000 �re-�ghters are used in our model with increment of 50.
Once the population is evolved then we are using the �re-�ghters
on the model. By using �re-�ghters, the spread of �re decreases, so
we can �nd its e�ect in the �tness of population in Section 4.

3.3 Multiple Species
To observe the forest behavior with multiple species, we introduced
another species of trees in our forest model. �is species of trees
have di�erent growth rates and they are evolved independently ac-
cording to their own growth rate. We generate a random probability
for each of the species. An empty cell turns into a tree cell when
at-least one of the random probabilities falls under its growth rate.
We also analyze the e�ect of using two species on the �tness of
forest model in section 4.

3.4 Visualization
�e visualization of the CA enables us to visually observe the be-
havior and changes in the forest. To visualize the forest, we created
graphical window which represents the forest where each block of 2
by 2 pixels represents a cell in the forest. �ere is no border between
two consecutive cells. We used color ’black’ to represent an empty
cell and ’green’ for cell with trees. When a cell has a burning tree,
the color is ’orange’ and when a cell has a tree just rescued by any
�re �ghter, the cell color is ’blue’. By default, there is a time gap of
750 milliseconds between two consecutive iterations.

3.5 Border Condition
We assume that, there is empty space outside our 250 by 250 arena
and no tree can grow in that space. �erefore a lightning strike can
not hit outside our arena; �re can not spread outside of the arena
from inside and vice versa. At any time step, we update all the rows
of the forest.

4 RESULTS
In this section, we present the results and corresponding �gures
from the simulation of our cellular automata model. �e results are
obtained using the methods discussed in section 3. For the simula-
tions we used a population of 20 genes and created 10 generations.
We are using the lighting strike probability f = 0.001.

4.1 Relationship between Longevity and Biomass
When we are running the GA to evolve the growth rate of the forest,
we are calculating the longevity and biomass of the forest as �tness
function. We can see the relationship of both longevity and biomass
in �gure 1.
From �gure 1, we can say that the longevity is constant at 5000

which is the total iteration time step. We can interpret from this
that our forest model is not evolved to any growth rate for which
the forest is completely depleted. We think it is because of low
lighting strike probability, the chance of catching trees on �re is
lower than the chance of growing trees. �erefore, longevity is not
an interesting �tness function for our model as it fails to explain the
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Fig. 1. The plot shows the fitness landscape of growth rate vs longevity and
growth rate vs biomass. Longevity remains unchanged over the growth rate.
Biomass increases over growth rate and converges to the value 0.34.

behavior of the growth. We will focus on the other �tness function
biomass.
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Fig. 2. The plot shows relationship between evolving growth rate over 10
generations. For each generation average growth rate is presented. The
growth rate is increasing with almost every generation. The evolution of
the growth rate depend on the design of GA.

Biomass is fraction of trees in CA lifetime. We can say from �gure
1 that the biomass in increasing with increasing growth rate proba-
bility. However we observe in our model that the biomass converges
to 0.34 and do not increase any further even if the growth rate is
increased. By running our GA multiple times for 10 generations we
have identi�ed that growth rate 0.997 maximizes value of biomass
to 0.34 in our model.

In �gure 1 we can observe that in lower growth rates from 0.1 to
0.3 there is a decrease in the biomass. �en from 0.3, the biomass
keeps increasing. Here we can see a phase transition from where
biomass does not decrease anymore and keep on increasing.

Again we have tried to observe how the growth rate is evolved in
our genetic algorithm with generations. From �gure 2, we observe

that GA is evolving an increased growth rate probability with each
generation. It also explains why we are not observing any change in
longevity. With constant lightening strike probability and increasing
growth rate it is very unlikely to evolve to a state with completely
barren state.

4.2 E�ect of Multiple Species
A�er introducing another species of tree in the forest we can observe
some changes in biomass. Figure 3 is showing the average biomass
for both of the species over 10 generations. From this graph, we can
observe that, a�er introducing multiple species in our model we get
constant higher biomass than single species over the generations.
�erefore, the multiple growth rate of trees can be explained to
cooperate with each other and cause overall increase in the biomass
of the forest. We can see a positive in�uence of the multiple species
on each other more clearly in �gure 4.
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Fig. 3. The plot shows the e�ect of introducing multiple species on the
model. In comparison to the single species, the biomass of multiple species
is constantly high which results as a positive on the model. The growth rate
of the multiple species work together to increase overall fitness.

In �gure 4, we are showing the average growth rate of the forest
for both single species ans multiple species over the generations.
Here in some cases, we observe that single species growth rate is
higher than both of the growth rates in multiple species. However,
still the biomass for the multiple species is higher than sin species.
From this fact. it can be inferred that multiple species growth rates
are co-operating each other and despite of having lower growth
rates are managing to show higher biomass.

4.3 E�ect of Fire-Fighters
We are introducing �re �ghters in our model with the growth rate
that maximizes biomass which is 0.997. We can see the results in
�gure 5. We are increasing the biomass in increments of 50. We
can see that for 0 and 50 �re�ghters the biomass is almost close as
before. However, when 100 �re �ghters are working there is a rapid
change in biomass increase. �is fact prevails with �re �ghters more
than 100 till 1000. �e result correlates with the design of our model.
As we are keeping our lightening strike probability at constant rate
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 Relation Among Growth Rate of Single and Multiple Species
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Fig. 4. The bar chart shows the relationship among growth rate of single
species and multiple specie. The average growth of both cases are presented
over 10 generations. In some generations single species growth rate is higher
than multiple species. However, still the biomass remains low for single
species. This is because the two growth rate of multiple species influence
each other positively.

of 0.001, in every iteration there is highest chance of 62 cells to be
struck by �re. �erefore,when the �re �ghters are less than 62 there
is probability for �re spreading and obtaining low biomass. As soon
as the number of �re �ghters cross 62 i.e from 100 there is no chance
of �re spreading as �re�ghters are able to extinguish every tree that
catches �re. With our growth rate probability, the forest then only
grows and has constant biomass of the value 0.999.
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Fig. 5. The plot shows e�ect of introducing fire-fighter in the model. The
number of fire-fighters are incremented in 50. The biomass is comparatively
low until 50 firefighters. A�er 100 fire-fighters the biomass changes rapidly
to 0.999 which remains constant till 1000 firefighters.

We can conclude that as soon as introducing 100 �re �ghters we
are observing a constant change in biomass. It cannot be considered
as a prominent phase transition, however, it is prominent change in
the our model that is e�ecting the whole forest.

Fig. 6. Some continuous zoom-in screen shots of forest model. Stage 1:
combination of some tree (green) cells and some empty (black) cells. Stage
2: one cell is burning (orange) due to lightning strike. Stage 3: fire spreads
to adjacent tree cells. Stage 4: fire fighters rescue (blue) three of the burning
cells. Stage 5: Rescued tree cells become green again. Stage 6: two more
tree cells catch fire due to lightning strike.

4.4 Visualization
From the �gure 6, we can observe the microstate changes of the
sub-forest with presence of �re �ghter. In stage 1, there are some
already grown trees indicated by green cells. �e orange cell in
stage 2 shows that the cell is burning due to lightning strike. Fire
spreads to others tree cells according to Moore neighborhood law
which is shown in stage 3. In stage 4, �re �ghters come into action
and randomly pick 3 burning cells. �erefore , the burning cells
are rescued (blue) and the remaining burning cells become empty
cells. �e rescued cells are actually tree cells and shown in green
color from stage 5 onwards. In stage 6, lightning strikes two more
tree cells and they become orange. �e process continues in this
way. �ese changes in the microstates eventually cause change in
the macrostate behavior of the overall forest model such as average
biomass.

5 CONCLUSIONS
In this paper, we implemented a 2D cellular automata model to
simulate the behavior of forest �re. We evolved the tree growth
rate using our genetic algorithm. We observed that, the growth rate
converges to achieve the maximum biomass value. However, the
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longevity value always remains 5000 throughout our GA. It is clear
that, the probability of lightning strike (0.001) in the GA is very low.
It was our intuition that, with the lightning strike probability 0.001,
it is not possible to get a longevity less than 5000. �erefore we
changed this probability and experimented with di�erent values. It
seemed that,if we keep the lightning strike probability over 0.85, we
may get longevity value less than 5000.
A�erwards we introduced another species of tree in our forest

model. We noticed that, the two species cooperated each other while
evolving. From prisoner’s dilemma [? ], we know that two parties
can cooperate or compete each other. In our case, we observe the
supporting in�uence on each other.

We also introduced �re �ghters in our model. We have seen that,
a�er a certain number of �re �ghter, the biomass almost touches
the highest point and stays there. As discussed in the results section,
it is very obvious that with the given low lightning strike rate, �re
can not spread across the forest with 100 or more �re �ghters.

We also observed the in�uence of changing microstate behavior
in macrostate behavior. Li�le changes in the states has shown
signi�cant changes in the overall behavior. Further tests may be
performed to get diverse outcome. Changes in GAs, lightning strike
probability, di�erent range in �re �ghter number and concept of
more than two species may show other interesting outcomes.
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