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1 Introduction

The need to deal with configurable operating systems is not new and several research projects
have tried, and are trying, to deal with this issue. Indeed, a number of past studies [10, 34, 4, 14,
32, 38, 54, 57] demonstrated that, from small constrained embedded systems to high performance
computing, general purpose operating system negatively impacts application performance. As an
example, [10] showed that a dedicated operating system for high performance systems transfers
messages between nodes from 4 to 10 times faster than Linux does.

Although the word configurable is clearly defined as the fact ”to fashion by combination
and arrangement” [2], it covers three distinct notions in operating system research. Indeed,
configurability deals with kernel extension, as well as kernel customization and kernel adaptation.
An extension adds some functions to an initial kernel, while a customization is the fact to tune
the kernel to suit a particular application or set of applications. At last, adaption is the property
to be able to adjust a kernel’s structure or behavior to new conditions. More generally, these
three notions refer to the specialization of a kernel to an application, a set of applications or a
given hardware in order to improve the overall system’s performance. From these definitions, the
number of concerned operating system research projects is even bigger as many projects address
at least one of these issues. Indeed, as a fixed operating system is too restricted and limited, most
of the actual projects provide some configuration facilities. Moreover, such operating systems are
not restricted to dedicated systems, as even general purpose operating systems address this issues.
As an example, the Linux operating system has evolved from a fixed kernel to a configurable one
thanks to the definition of kernel modules that allow to add, or remove, functionalities to the
kernel.

In order to identify the huge number of different configurable operating systems, a survey is
therefore needed. Moreover, such a survey should allow to identify the main classes of configura-
bility and to compare operating systems from a configurability point of view. However, only few
papers try to do such a survey, but the main lack of these surveys is they are either out-of-date
[16, 52, 51] or are too restricted [27]. The most recent survey [19] deals only with customizability
in operating systems and the classification based on the time and the initiator of customization
is not enough for these kind of systems.

In this paper, we present an up-to-date survey that includes newest research projects and
based on revelant criteria that has been risen when authors started to work on a configurable
operating system for high-performance computing [39]. Indeed, for each configurable operating
systems we have to figure out the programming paradigm, the granularity and the depth of
configuration as well as the time of configuration. Moreover, it is useful to identify if there
are some mechanisms that enforce the integrity of the system after a configuration and which
application domains the operating system primary targets.

The rest of this paper is organized as follows. The first section motivates the criteria used in
this survey and outlines the different ways operating systems tackle each of them. The second
section is an evaluation of several revelant operating systems based on the evaluation criteria,
while the third part provides a comparison of them. Finally, before the conclusion, a last part
analyzes the evaluation and points out the main lack of the existing configurable operating
systems.

2 Classification criteria

In this section, we motivate and present more in details the classification criteria on which
this survey is based. We have identified six different criteria namely programming paradigm,
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granularity, depth, time, integrity and application domain.

2.1 Programming paradigm

The first criterion focuses on the programming paradigm used to configure an operating system.
Over the past 30 years, several programming paradigms has been used for operating system
configuration from classical libraries (e.g. Exokernel, Pebble) to objects (e.g. K42, MetaOS ),
through modules (e.g. Linux, Spin) and components programming (e.g. MMLite, OSKit, Scout,
ThinkTinyOS ). In order to avoid confusion, we need to identify the differences between a compo-
nent, an object and a module. In this survey, a component follows the definition provided by C.
Szyperski [55] where a component is defined as: ”a unit of composition with contractually speci-
fied interfaces and fully context dependencies that can be deployed independently and is subject to
third-party composition”. Although a module can be also defined as a unit of composition that
encapsulates data and subprograms, the main differences with a component are a module can
not be instantiated and can only be composed in a flat and static way. Finally, from the previous
definition, a component is an enhancement of an object as it explicitly defines its requirement
and addresses deployment and configuration issues.

It must be noticed that several projects are looking at other programming paradigms such as
aspect oriented [47, 18, 17, 21] or domain-specific language (DSL) ones [6, 42]. Aspect-oriented
programming paradigm is a technique for specifying behaviors (or strategies) independently of the
target system. A ”weaver” automatically integrates the code of such an aspect into the relevant
system entities. This approach separates strategies, which are programmed using aspects, from
the underlying mechanisms, and thus should simplify system evolution and extension. A domain-
specific language (DSL) is a programming language dedicated to a particular application domain.
A DSL is more restricted than a general-purpose language, such as Java or C, but encapsulates
domain expertise that can allow verification of important safety properties. However, these
projects have not been surveyed because they are relatively new and immature. Indeed, as an
example the first version of the weaver aspect for C++ language, called AspectC [53], has just
been released at the end of october 2005. Moreover, they only allow to deal with some parts of
an operating system and are not used to develop a complete system. As an example, in the case
of domain specific languages [6] deals only with scheduling issues and [42] is dedicated to device
driver development. Moreover, in the case of aspect oriented programming, the most advanced
study [21] deals with kernel extensions over a NetBSD operating system, but doesn’t provide any
facility to develop an entire operating system based on aspects.

All of these paradigms tend to structure the code as much as possible and therefore have
a huge impact on how operating system can be configured. However, the choice of a pro-
gramming paradigm does not affect other criteria except the integrity one. Indeed, while each
programming paradigm allows to tackle granularity, depth, time and application domain criteria
in various different ways, the integrity criteria depends on the facilities provided by the pro-
gramming paradigm. As an example, the classical interface type-checking obviously needs the
interface notion which is not present in the library programming paradigm. Moreover, the pro-
gramming paradigm based on framework allows to enforce the configuration of a system in order
to be validated automatically. Similarly, programming paradigms that allow to formally express
requirements of each part of the system (e.g. components or modules thanks to well-defined re-
quired interfaces) can also be validated automatically but in a more flexible way than frameworks
as no predefined configuration is required. It means that the choice of a programming paradigm
must be mainly based on what kind of validation is expected for the system.

Finally, the programming paradigm used to configure the kernel may have some consequences
on the way the upper levels of the system (services and applications) have to be developed.
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As an example, the Think component-based operating system forces the whole system to be
component-based.

2.2 Granularity

The granularity criterion focuses on the size of the unit of configuration defined by the program-
ming paradigm. This size usually fits in a range from coarse to fine grain. A coarse grain size
(e.g. eCos, OSKit, Pebble, Scout, Linux ) allows to configure an entire subsystem at once, while
a fine grain size (e.g. MetaOS, MMLite, Spin) allows to directly configure a function of the
kernel (either its data or its behavior). A third level of granularity is usually identified, namely
mid-coarse grain (e.g. Choices, K42, TinyOS ), that allows to configure a subset of the kernel
functionalities.

While, most of the programming paradigms have a fix grain of configuration, the programming
paradigms with hierarchical facility (e.g. Think) allows to vary the granularity depending on the
part of the system and the need of configuration. Moreover, such facility tackles the trade-off
between the granularity and the complexity of the resulting structure as it allows to define coarse
grain entities made of finer-grain ones. Indeed, as mentioned by the K42 project, the main
drawback of a mid or fine-grain granularity is the complexity to understand the interactions
between the system’s entities.

Finally, although this criteria seems to be strongly linked to the programming paradigm one,
it is not. As an example, the MMLite and OSKit operating systems are both component-based,
but the first one falls in fine grain category while the second one falls in the coarse grain category.

2.3 Depth

The third criterion focuses on the depth of configuration in a operating system. It refers to
the level in a operating system below no configuration is possible. A first rough classification
identifies two main categories of depth, namely full and partial. A full configurable operating
system (e.g. Choices, K42, MetaOS, MMLite, Spin, Think or TinyOS ) allows to configure the
whole part of a kernel including its lowest part, while a partial configurable one has a fixed set of
functions that can not be configured. However, this first classification needs to be refined in order
to differentiate the many different operating systems that belong to the second category. Three
sub-categories of the partial one have been identified, namely partial-small, partial-medium and
partial-big, in order to evaluate the size of the non-configurable part. A partial-small configurable
operating system has the smallest fixed part that usually only includes an hardware abstraction or
reification layer with some resources protection and multiplexing facilities. Such typical operating
systems are the Exokernel or Pebble ones. A partial-medium configurable operating system
has a bigger fixed part made of a subset of classical operating system services such as the
scheduling, inter-process communications and interruptions management. The eCos, OSKit and
Scout operating systems fit in this category. Finally, a partial-big configurable operating system
fixed the most part of its kernel except the device drivers part (e.g. Linux ).

It must be noticed that each surveyed operating system project that falls in the full config-
urable category has either mid or fine grain granularity. They are therefore much more config-
urable as each part of the system can be configured at a mid or fine-grain.

2.4 Time

The time criterion focuses on when the operating system can be configured. Classically, such
a configuration may occurs at each stage of the life cycle of an operating system: it may be at
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development, compilation, boot or execution stage. If an operating system provides facilities to
be configured at development or compilation stages it is called a static configuration, while a
dynamic configuration covers the boot and execution stages.

The interest to identify the configuration time is multiple: a configuration at execution stage
allows to correct a bug or add/remove functionalities without shutting down the system. It
is extremely interesting for systems that require continuity of services. However, this kind of
configuration, and more specially when function is removed or modified, rises several issues such
as definition of safe points (when a configuration can be done), state transfer (how to map state of
a replaced function to a new one), the redirection (how the system know to interact with the new
part) and the version management (how different version of a function can be used). The interest
of configuration at boot stage is usually to tune the system when it knows its exact environment.
A configuration at compilation stage allows the compiler to automatically configure the system,
while it is done manually at development stage. During these two last stages, either compiler or
developer needs to have an exact knowledge of the whole system, including the applications and
the hardware.

However, most of the surveyed operating systems fall in either the development stage category
(e.g Choices, K42, Linux, MetaOS, MMLite, Pebble, Spin and Think) or the execution stage
one (e.g. eCos, Exokernel, Scout and TinyOS ). Only the OSKit operating system provides
facilities to configure the system at boot-time. It must be noticed that most of the projects
that fall in the development time category target constrained embedded systems. Indeed, it
can be explain by the fact that a run-time configuration implies a cost and some indeterminism
that can not be supported by such systems. For projects that fall in the run-time class, the
difference between them is based on which kind of facilities is provided in addition to the classical
dynamic loader. Indeed, many projects only provide this minimal facility and everything must
be foreseen and implemented by the programmer. However, some projects such as MMLite and
K42 provide additional facilities such as safe points identification or state transfer mechanism.
Finally, although all these projects provide run-time configuration, most of them do not explicitly
mention which part of the system can or can not be configured during the execution of the system.

2.5 Integrity

The integrity criterion is one of the most important one for a configurable system, while it
addresses the validity of a particular configuration. Indeed, to each configuration operation, it
must be evaluated if the new configuration does not introduce incompatibility (e.g. functional,
security or quality of service) with the rest of the system. It must be noticed that such an
evaluation must be performed whenever a configuration is possible (c.f. time criteria).

From the surveyed operating systems, two main different mechanisms are used to enforce
the integrity of a given configuration. The first one is based on a semantic validation in order
to validate that each required and provided services are compatible and present. This kind of
integrity is achieved by interface type-checking, as well as dedicated languages (e.g. OSKit,
TinyOS ), constraint definitions (e.g. eCos) or frameworks (e.g. Choices) which enforce the
structure of the system. The second one comes from the security domain and allows, or not, a
configuration to be done and isolates each part of the system. It covers mechanisms provided
by the MetaOS project that defines configuration policies in order to identify which part of the
system can be configured. It also covers Pebble’s mechanism that executes each extension in a
distinct protection domain in order to avoid unintentional effects of the new configuration to the
rest of the system. It must be noticed that each project that falls in the latter class also provides
a semantic validation thanks to the classical interface type-checking. Moreover, some projects do
not have specific mechanisms that address the integrity criteria except the underlying compiler
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(e.g. Linux, Exokernel).

2.6 Application domain

The last criterion deals with the application domain primary targeted by an operating system.
Indeed, depending on an application domain, a configurable operating system focuses on specific
issues and provides some configuration facilities related to these issues. As an example, a real-
time operating system should provide different scheduling policies, while a distributed operating
system should provides different memory management polices.

Three main classes have been identified, namely distributed domain (e.g. Choices, Exokernel
or K42 ), which includes high performance and parallel systems, general purpose domain (e.g.
Linux, MetaOS, OSKit or Spin) and dedicated domain (e.g. eCos, MMLite, Pebble, Scout, Think
or TinyOS ), which includes embedded systems. It must be noticed that no operating system has
become a standard in any of the application domains. Indeed, for each domain a lot of projects
are still actively running. However, it seems that the embedded domain has more configurable
operating system projects than the distributed one. It can be explained by the fact that the need
of application specific operating system has primary appeared in embedded systems because of
the restricted resources.

3 Evaluation of configurable operating systems

In this section, several configurable operating system projects are presented. Presentation of
each project is divided in two parts: the first part gives an overall view of the approach, while
the second part is an evaluation based on criteria presented in the previous section. In order
to evaluate these criteria, publications are usually not not enough: it is why we mainly survey
projects with available source code. Moreover, as an exhaustive survey is impossible to achieve,
we rather present projects with relevant answers to the criteria.

3.1 Choices

Choices [13] is a customizable object-oriented operating systems developed at the university of
Illinois and started in 19871. Choices is more than a classical operating system project as it
defines a methodology to develop operating systems. It means that it is more a software engi-
neering project than a pure operating system one. Indeed, Choices’ architecture is organized into
frameworks of objects that are hierarchically classified by function and performance. This ap-
proach allows to customize the operating system by specializing classes in the various hierarchies,
and by instantiating a specific set of objects.

Programming paradigm Programming paradigm of Choices is entirely based on frameworks
[20] and objects. It defines a framework as ”an architectural design for an object-oriented sys-
tem” [13]: it allows to captures design insights using entity relationship diagrams, data flow
diagrams, control flow diagrams, class hierarchies, class interfaces and path expression. More-
over, a framework is a reusable entity as it can be refined (called subframework) and may have
several instantiations and implementations within a system.

In order to better understand the framework approach, we describe the main framework
defined by Choices. This main framework provides generalized entities and constraints to which
the specialized subframeworks must conform. It introduces the notion of a Process (a sequence

1The project doesn’t seems running anymore as the last code release is from 1994
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of actions), the address space of a Process called Domain, and MemoryObjects (data) that can
be accessed by a Process in its Domain. The subframeworks introduce additional entities and
constraints and subclass some of the entities of the framework. Examples of such subframeworks
include virtual-memory management, process management, file system and message-passing.
Recursively, these subframeworks may be refined further.

Granularity The unit of configuration in Choices is object as it is the basic entity of frame-
work. Inside framework, objects are used to model both the hardware interface, the application
interface, and all operating system concepts including system resources, mechanisms and policies.
More precisely, every logical or physical system entity, such as CPUs, disks, memory, schedulers,
address space or locks is reified by an object belonging to a framework. It is why, Choices is
classified as a mid-grain configurable operating system.

Depth The Choices structure is a typical monolithic one as only applications are in the user
space. The micro-Choices project is a redesign of Choices into a micro-kernel architecture.
Nevertheless, both of these projects allow to configure each layer of the operating system including
the low level one. Choices is therefore classified as a full configurable operating system.

Time Choices may be configured either at development time or run-time. At run-time, Choices
provides a dynamic loading mechanism that permits application and system programs to add
new system services at run-time. As Choices is written in C++, a specific library has been added
to the language in order to allow dynamic class loading. Nevertheless, it must be noticed that
each possible dynamic configuration must be foreseen at development time in order to tackle
classical dynamic configuration issues (cf. section 2.4 page 5).

Integrity The choices compile tool chain enforces type safety of frameworks and objects. More-
over, it guides the programmer in implementing customizations by requiring particular behaviors
and by enforcing the use of the interface provided by the framework.

Application domain Targeted systems of Choices are distributed and parallel systems as
many objects of the source code deal with memory management, message-passing and network
issues.

3.2 eCos

eCos [1] is an embedded real-time configurable operating system supported by the RedHat com-
pagny and started since 2001.

Programming paradigm The programming paradigm used by eCos is the package one as
each part of the system is a package. Each package is described in a single file using the CDL
language. This file usually includes details of all the configuration options and how to build
the package. Developers select and configure the required packages for a specific system using a
visual tool.

Granularity The unit of configuration in eCos is the package. However, it must be noticed
that each package has a plenty of configuration options which allow to tune them. Package
granularity can be classified as coarse grain one as packages implement a whole part of the
system such as the hardware abstraction layer, the file system or the network management.
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Depth The depth of configuration in eCos stops at the kernel package. This package provides
the core functionality needed for supporting multi-threaded applications. It has the ability to
create new threads in the system and to control over various threads, for example manipulating
their priorities. Moreover, it provides a choice of schedulers and a range of synchronization
primitives, as well as the support for interrupts and exceptions. Thus, eCos is classified as a
partial-medium configurable operating system.

Time The configuration of an eCos system is entirely done at development time thanks to a
graphical tools. This tools allows to browse each package and each option of the packages.

Integrity The graphical tool used to configure an eCos system allows to check that constraints
defined by packages are respected in a given configuration. These constraints define services
required by a package.

Application domain The eCos operating system targets real-time embedded systems, and
therefore has been ported on embedded processors (e.g. ARM). One of its goals is efficiency
from a memory viewpoint, it is why it tries to solve the tradeoff between package granularity
and package costs with multiple configuration options.

3.3 Exokernel

The Exokernel project [22, 37] is developed at the Massachusetts Institute of Technology. This
project addresses the problem of performance and flexibility in operating systems by providing
application-level management of physical resources. The main idea of the Exokernel project
is that applications better know how resources must be managed in order to get optimal per-
formances. Exokernel therefore defines a small kernel securely exports all hardware resources
through low-level interface to untrusted library operating systems. Library operating systems
use this interface to implement system entities and policies.

Programming paradigm In Exokernel, the programming paradigm to allow configuration is
based on library. Moreover, Exokernel is developed using the C language for efficiency reasons.
The kernel, as well as the libraries are implemented in C.

Granularity The unit of configuration in the Exokernel operating system is the library. Indeed,
developers have to choose, or develop, the suitable libraries for their applications. As libraries
implement some subpart of the system (RPC, scheduling, memory management), Exokernel is
classified as a coarse grain configurable operating system.

Depth The depth of the configuration ends at the kernel level which is a minimal layer. It must
be noticed that Exokernel does not emulate hardware resources but export it. It means that
library link to the kernel are platform dependent. The Exokernel minimal layer functionalities is
limited to ensuring protection and multiplexing of resources. Thus Exokernel fits in the partial-
small configurable operating system category.

Time The configuration of the system is performed at development time: each library is linked
statically to the kernel during compilation stage.

Integrity The integrity of a given configuration is only based on the C compiler.
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Application domain The Exokernel operating system targets high performance operating
systems with extensibility needs.

3.4 K42

K42 [3, 7] is a recent2 open-source and scalable operating system kernel. It targets next generation
servers ranging from small-scale multiprocessors, to very large-scale non symmetric multiproces-
sors. The main goals of K42 is to develop a scalable, adaptable, extensible and customizable ker-
nel. The K42 operating system is currently running on PowerPC platforms including POWER3,
POWER4, POWER4+ and POWER Mac G5. Finally, the K42 project is hosted by IBM.

Programming paradigm Originally, K42 uses the building-block programming paradigm [5].
Nevertheless, in the latest publication [3], authors do not refer to this paradigm anymore, but
rather use the object oriented one as the difference between them was too thin. K42 is therefore
structured in an object-oriented manner at each layer of the system. More precisely, each resource
(e.g. virtual memory region, network, file, process) of the system is managed by a ” per-instance”
object. Nevertheless, as mentioned in [3], the largest drawback of the object-oriented nature of
the system is the complexity it introduces. It especially appears when one is trying to understand
the interactions between the different entities of the system.

Granularity As K42 is completely designed using object paradigm, its unit of configuration
is object. It implies that K42 may be classified as mid-grain from a granularity point of view.
Indeed, objects implement exceptions, as well as timers, process, scheduler, files, address space,
etc. However, this mid-grain decomposition leads to a huge number of objects: there are about
1800 classes in the latest version of K423.

Depth Each part of the K42 operating system can configured, which means that K42 is clas-
sified as a full configurable operating system.

Time K42 may be configured either at development time or at run-time [7]. Obviously, con-
figuration at development time can be achieved thanks to the available source code, but one
of the main advantage of K42 is its ability to dynamically update objects. However, in K42
dynamic configuration is limited to the dynamic update of an existing part of the system. Three
kinds of update has been identified: updates that only affect code (where any data structures
remain unchanged across the update), updates that affect both code and global single instance
data (e.g. Linux kernel’s unified page cache structure) and updates that affect multiple-instance
data structures (e.g. data associated with an open socket). K42 tackles the main issues related
to dynamic configuration: configurable unit is object, safe point detection is achieved thanks to
mechanism similar to read copy update (RCU) in Linux [41], state tracking is performed using
the factory design pattern [29] and state transfer has to be foreseen by developers. Although
K42 allows dynamic configuration, there are still open issues: as an example, object interfaces
can not be dynamically changed. Moreover, dynamic configuration is not supported to objects
outside the kernel space, but in the same time low-level exception objects are not concerned
too. Finally, new issues have been risen such as timeliness of configuration: indeed, for some
configuration, such as security one, it is important to know when a configuration has completed,
and to be able to guarantee that configuration will be complete within a certain time frame.

2The first paper has been published in 2000
3The evaluation has been done on 10/25/2005 using CVS
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Integrity In K42, integrity of a given configuration is only based on interface’s signatures. It is
classically performed by compiler when configuration is done at development time. At run-time
integrity is enforced because of the limitation of dynamic configuration to dynamic update.

Application domain K42 targets high-performance systems ranging from small-scale multi-
processors to very large-scale non-symmetric multiprocessors. It implies a lot of objects dealing
with cache-coherence, memory management, object distribution, etc. Moreover, K42 provides
its own operating system library that can be mapped in order to get K42 compatibles with the
Linux API and Linux ABI.

3.5 Linux

Linux [15] is a free software Unix-like operating system kernel that was begun by Linus Torvald
in 1991 and subsequently improved with the assistance of developers around the world. Linux
has been originally developed for the Intel 80386 processor and has since been ported to many
other platforms. At this time4, the latest version of the Linux source code is 2.6.14.

Programming paradigm The most part of the Linux source code is written in C, along with
snippets of assembly language. However, the programming paradigm used to configure the Linux
kernel is the module one. The basic idea of a linux module, which is called a Linux Loadable
Kernel Module or LKM, is to generate in the first instance a minimal kernel, and then to load
modules according to need. A LKM is defined as an object file that contains code. Moreover,
a KLM has to provide some well-defined services in order to manage its life-cycle, such as the
entry functions (e.g. init module()) or exit functions (e.g. cleanup module()).

Granularity Although, a LKM has no predefined granularity, in practice it is used to add
support for new hardware (e.g. device drivers), file systems or for adding system calls. A LKM
allows therefore a coarse-grain configuration of the Linux kernel.

Depth The LKM can only be loaded on a existing Linux kernel and only some parts of the
kernel can be configured. As mentioned previously, these parts are typically the device drivers
parts. It means that most of the operating system can not be configured. Linux is therefore
classified as a partial-big configurable operating system.

Time One of the main advantage of the LKM is to be able to configure the Linux kernel without
rebooting the system. However, Linux does not provide any mechanism to tackle the classical
run-time configuration issues. Although, all these issues have to be foreseen by developers, Linux
forces the place where it must be tackle thanks to the entry and exit functions of each LKM.

Integrity The integrity aspect is mainly addressed by the C compiler that generates the LKM.
Moreover, when a LKM is loaded all its dependencies must be solved. It can be done either manu-
ally by the developer or automatically by the Linux kernel (thanks to the modeprobe command).
However, there is no mechanism to prevent misbehavior. As an example, KLM is well know
hacker’s mechanism to intsall rootkit.

4Fall 2005
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Application domain The primary goal of Linux is to be a general purpose operating system
such as Unix. However, over the years, it has been ported and used to a wide variety of application
domains from embedded systems to high performance ones.

3.6 MetaOS

The MetaOS project [35, 36] deals with development of secure and flexible operating systems
using a meta approach. This project is an improvement of a previous meta-object oriented
operating system, namely Apertos [59], in order to avoid heavy performance penalties and coarse-
grain flexibility. The main motivation to use a meta approach is that it should increase flexibility
as it provides a clear separation between provided services and the way to access to these services.
The MetaOS project started in 1996 at the university of Victoria (Canada) and ended in 1998.
This project is a prospective one and only a prototype has been developed which is based on a
Java Virtual Machine. Moreover, we do not have access to the source code of the project.

Programming paradigm The MetaOS project uses a meta programming paradigm. The
meta term is not limited to meta-object, but it is also used for meta-interfaces and meta-spaces.
Meta-objects are defined as objects that contain implementation details of other objects. Meta-
interfaces are interfaces that articulate and expose key implementation details. They can contain
declarative methods as well as imperative methods. Declarative methods allow retrieval of status
data and selection from a range of existing implementation options, and imperative methods
allow the addition of new code to an existing implementation. Finally, meta-spaces contains
meta-objects that form a optimal execution environment for objects.

These differences of meta concept lead a structuring of the system in three parts: the base level
is implemented by objects and represents applications; the level below, called meta-level, consists
of meta-objects that implement classical operating system services; and the lower level, called
meta-meta-space, which allocates the resources to the meta-spaces. Meta-spaces dynamically
group meta-objects in order to support application with similar requirements (e.g. scheduling,
memory management, networking).

Granularity Although the base entity of the meta programming paradigm is the object, the
unit of configuration is the method thanks to the concept of meta-interfaces. Therefore, MetaOS
has a fine-grain configuration unit.

Depth MetaOS should be fully configured including its kernel. Nevertheless, this criteria is
difficult to evaluate as the prototype of MetaOS has only been implemented over a Java virtual
machine.

Time One of the main claim to use meta concept is its ability to configure an operating system
at run-time. Indeed, using the meta-interfaces concept, it is possible to identify and configure
each part of the system at a fine-grain granularity. Nevertheless, none of the reference papers
deal with classical run-time configuration issues (cf. section 2.4 page 5).

Integrity At development time, the integrity criterion is achieved by the Java programming
language that is used to develop the prototype of MetaOS. At run-time, the integrity aspect
is performed thanks to the meta-interfaces and meta-space manager concepts. Indeed, meta-
interfaces allow to define policies in order to validate and allow any changes, while the meta-space
manager has special privileges in order to dynamically group meta-objects. However, there is no
integrity mechanisms to validate each combination of meta-objects.
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Application domain The MetaOS project targets general purpose operating system as cost
of meta approach is still a critical issue.

3.7 MMLite

MMLite [33] is an operating system project developed by Microsoft in 1998. The main goal of
MMLite is to allow a system to be dynamically assembled into a full application system. The
dynamic configuration is achieved through a original mechanism called mutation. Another issue
targeted by MMLite concerns the efficiency of the system from a memory footprint viewpoint.

Programming paradigm MMLite uses a programming paradigm based on COM component
[11]. A MMLite component is a collection of concrete classes and some glue code that ties
them together. A concrete class implements one or more interfaces. An interface, also known
as an abstract class, is purely abstract in that it is not tied to any particular implementation.
Where an interface is purely abstract, a concrete class is concrete, i.e. it is one particular
implementation. A concrete class can inherit another concrete class (also called subclassing).
In that case some methods are copied from the super-class (the one inherited from) and others
are implemented by the subclass (the methods override those of the super-class). Finally, an
interface defines the interaction between a user of a service (the client) and the implementer
of the service (the server). An interface is essentially a list of methods (functions) with their
arguments and behaviors. It must be noticed that all interfaces derive from IUnknown interface.
IUnknown implements lifetime control through reference counting and type casting with version
checking through Unique Identifiers (UID).

To summarize an interface is implemented by a concrete class that in turn resides within a
component.

Granularity MMLite defines a unit of configuration and a unit of composition. The unit
of composition is either component or concrete class, whereas the unit of configuration is the
method. Indeed, a dynamic configuration may lead to the redefinition of a method of a concrete
class. Therefore, MMLite is classified as a fine grain configurable operating system.

Depth MMLite can be configured at each level as components are also used to structure the
kernel. However, the way components are assembled is pre-defined as the global structure of
the system must be a micro kernel one. Another example, is that a scheduler component is
always required even if the system is not multi-threaded. However, MMLite is considered as a
full configurable operating system.

Time The main goal of MMLite is to allow configuration at run-time. MMLite allows run-time
changes to the implementation of an object, even while the object is being used thanks to the
mutation mechanism. Mutation is the act of atomically changing an ordinarily constant part
of an object, such a method implementation. Each mutation is performed by a thread which is
called a mutator.

A mutator must translate the state of the object from the representation expected by the old
implementation to the one expected by the new implementation. It must also coordinate with
worker threads and other mutators through suitable synchronization mechanisms. Transition
functions capture the translations that are applied to the object state and to the worker threads
execution state. In order to limit the amount of metadata, execution transitions only happen
between corresponding clean points in the old and new implementations.
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The synchronization mechanisms suitable for implementing mutation is divided into three
groups. The first one is mutual exclusion. In this case mutation cannot happen while workers
are executing methods of the object to be mutated. Mutual exclusion is simple in that there
is no worker state associated with the object when mutation is allowed to happen. The second
group is based on transactions. In this case, mutation have to roll back the workers that are
affected by mutation. Mutators and workers operate on an object transactionally and can be
aborted when necessary. The last group is based on swizzling. In this case, mutators modify
the state of the workers to reflect mutation. Instead of waiting for workers to exit the object
or forcing them out, the third mechanisms just suspends them. The mutator then modifies the
state of each worker to reflect the change in the object.

Integrity Whenever a configuration is possible, MMLite checks interfaces type in order to
evaluate their compatibilities from a functional and a version point of view.

Application domain MMLite targets multimedia embedded systems, such as DirectX accel-
erator board, x86, ARM and VLIW processors. It leads to the need of small memory footprint.
As example, a minimal kernel used in a watch has a size of 10 KB on a x86 processor.

3.8 OSKit

The OSKit project [26], from the university of Utah, aims to provide a framework and a set
of modularized components for the construction of operating system kernels. It means that
OSKit does not define a new operating system, but rather provides facilities to develop a specific
operating system. These facilities include a component library as well as tools to compose an
operating system. The project started in 1996 and the last change in the source has been done
in 2002.

Programming paradigm The programming paradigm used by OSKit is the component one.
It defines its own component model called unit [25]. This component model defines two kinds of
components: the first one, called atomic unit, is the smallest unit of composition, while the second
one, called compound unit is composed of other components. It means that this component
model is hierarchical. Moreover, it must be noticed that component’s behavior is written using
C language, while component description and linkage is described using a dedicated language,
called Knit [49].

Granularity Although OSKit is based on a hierarchical component programming paradigm, it
must be classified as a coarse grain configurable operating system. Indeed, components implement
sub-part of the system, such as memory, network or processes management, and are not used at
a finer grain.

Depth OSKit is clearly classified as a partial-medium configurable operating system as it is
based on a minimal kernel component. Above this component, configuration is possible in order
to include several device drivers, memory manager, and so on.

Time The time of configuration in OSKit is mainly at development time, but it can be also
achieved at boot-time. Nevertheless, it must be noticed that configuration is impossible at run-
time. Indeed, after compilation stage, the component’s structure of the system is lost and leads
to a closed and monolithic system.
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Integrity The integrity of a given OSKit configuration is enforced by the dedicated language
in charge of composing and linking components. In addition to the classical import/export
services type checking, this language, and its associated compiler, allow to check domain-specific
architectural invariant defines by programmers. For example, it is possible to check that code
executing without a process context will never call code that requires a process context.

Application domain The OSKit project mainly focuses on general purpose operating systems
as part of the code comes from the FreeBSD operating system.

3.9 Pebble

Pebble [28, 40] is a component-based operating system developed at the Bell Laboratories. It
has been designed with the goals of flexibility, safety and performance. Pebble is based on
three main concepts, which are (1) a minimal privileged mode nucleus, (2) a set of replaceable
system service and application components running in distinct protection domain and (3) a code
generator specialized for each possible cross-domain transfer. The first version of Pebble was
released in 1999.

Programming paradigm Although Pebble defines itself as a component-based operating
system, it can not be classified as it according to component’s definition given in section 2.
Indeed, Pebble’s component is never defined (no notion of interfaces, nor binding) and it would
be rather classified as a library-based operating system. In Pebble, each library is implemented
by a single C file and is in charge of a specific operating system service.

Granularity Unit of configuration in Pebble is therefore library. Each library implements a
classical operating system service such as device drivers (e.g. serial, IDE, PCI, SCSI, ethernet or
RTC), cache, interrupt handler, scheduler, files system or virtual memory management. Pebble
is therefore classified as coarse-grain grain from the granularity point of view.

Depth The Pebble operating system is based on a micro-kernel called nucleus. The nucleus
is as minimal as possible and is only responsible for switching between protection domains.
Nevertheless, the nucleus can not be configured: configuration only deals with selecting operating
system services implemented by libraries at higher level. Thus, Pebble is classified as a partial-
small configurable operating system.

Time Pebble allows mainly to configure a system at development time. Moreover, the Pebble’s
reference paper [28] refers to dynamic library replacement. However, neither the reference paper
nor the source code give any details on the way such a replacement is achieved.

Integrity Pebble does not have the interface concept, thus the integrity of a configuration
is only ensured by the underlying programming language compiler which is C. At run-time
protection is provided by hardware-enforced virtual address spaces as each library runs in a
distinct protection domain. All communication between protection domains is done by the
means of portals. A portal enforces security between protection domain as only if a portal exists
between protection domain A and protection domain B can A invokes a service offered by B.
The hardware memory protection prevents access to memory outside the protection domain, and
limits access to the well-defined portals.
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Application domain Pebble mainly addresses embedded communication devices with safety
needs. It is important to notice here, that the Pebble architecture is based around the availability
of hardware memory protection: it requires a memory management unit.

3.10 Scout

Scout [45, 44] is a communication-oriented operating system developed at the University of
Arizona. Therefore, Scout mainly focuses on the efficiency of processing and forwarding data
in systems with different characteristics. The latter requirement is performed thanks to the
definition of Scout as a configurable operating system, while the first one is achieved thanks to
the path abstraction. A path encapsulates the flow of data from an I/O source to an I/O sink and
defines its semantic (e.g. its reliability, security or real-time behavior) as well as the collection
of system resources needed to process its data.

Programming paradigm Components, which are called routers, are the unit of program
development in Scout. Each Scout component provides a well-defined and independent func-
tionality. Well-defined means that there is usually either a standard interface specification, or
some existing practice that defines the exact functionality of a component. Independent means
that each single component provides a useful, self-contained service. More concretely, a Scout
component is implemented as a collection of C source files and is described using a ”spec” file
that lists the related source files and the accessible services.

To form a complete system, individual components are connected into a component graph:
the nodes of the graph correspond to the components included in the system, and the edges
denote the dependencies between these components. Two components can be connected by an
edge if they support a common service interface.

Granularity A Scout component typically implements network protocols (such as IP, UDP
and TCP), storage system (such as VFS, UFS or SCSI) and drivers for the various devices in
the system. It means that a Scout module allows a coarse grain configuration of the operating
system. In the latest source code release, the number of modules is 62 and each of them has an
average of 4000 lines of C code.

Depth Scout is based on a fixed kernel that implements interrupts, exceptions management as
well as low-level services. Scout is therefore classified as a partial-medium configurable operating
system.

Time The configuration of Scout is only allowed at development time thanks to the definition
of the module graph. Nevertheless, components are run-time entities which allow to identify the
structure of the system at run-time: it is used to manage the path abstraction in order to be
able to modify path dynamically.

Integrity The integrity criterion in Scout is enforced by the Scout tool chain in order to check
if connected components have compatible interfaces.

Application domain Scout targets information appliances such as network devices, multime-
dia workstation or individual nodes of a distributed-memory multi-computer system.
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3.11 Spin

SPIN [8, 48] is an operating system project developed at the University of Washington in 1995.
The main goal of this operating system is to allow applications to dynamically specialize the
kernel in order to achieve a particular level of performance and functionality. A specialization
can add new kernel services (by linking new code), as well as replace default policies or migrate
applications function to kernel address space. In SPIN a specialization is called an extension and
its behavior is defined through the execution model.

Programming paradigm SPIN and its extension are written in Modula-3 [46], a general
purpose programming language based on modules. The key features of the language include
support for interfaces, type safety, modules, generic interfaces, threads and exceptions. The
design of SPIN depends only on the language’s safety and encapsulation mechanisms. However,
applications can be written in any language.

Granularity Granularity in SPIN is defined by the extensions. Extensions are defined in
terms of events and handlers. An event is a message that announces a change in the state
of the system or a request for a service. An event handler is a procedure that receives the
message. An extension installs a handler on an event by explicitly registering the handler with
the event through a central dispatcher that routes events to handlers. Using this extension model,
extension may be defined at the granularity of a procedure or may entirely replace an existing
system service. Therefore, SPIN is classified as a fine-grain configurable operating system.

Depth Although the SPIN operating system is structured as a micro-kernel, the extension
model allows to configure the kernel itself.

Time The main purpose of the SPIN operating system is to allow to configure the operat-
ing system at run-time. This kind of configuration is achieved thanks to the extension model
as described in the granularity criterion. However, the extension model does not defines how
extensions can be removed or how the state transfer between two extensions is achieved.

Integrity The integrity criterion is enforced by the Modula-3 programming language and ca-
pabilities. Indeed, Modula-3 compiler enforces interface boundaries between modules using the
encapsulation idea and sensitive kernel interfaces are secured via a restricted linker and the type-
safe properties of the language. Moreover, SPIN uses capabilities in order to enforce operations
that can be applied to resources. Indeed, all kernel resources are referenced by capabilities. A
capability is defined as an unforgeable reference to a resource which can be a system module, an
interface or a collection of interfaces. Individual resources are protected to ensure that extensions
reference only the resources to which they have been access. Interfaces and collection of interfaces
are protected to allow different extensions to have different views on the set of available services.

Application domain The goal of SPIN is to build a general purpose operating system that
provides extensibility, safety and good performance. As an example, a SPIN instance has been
developed for a web server. The SPIN Web server executes entirely in the kernel address space.
This allows it to access the network and the local disk with low latency. The Web server applica-
tion, as well as the file system interface, entire network protocol stack, and device infrastructure
are all linked into the system after it boots.
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3.12 Think

Think [23, 24] is a component-based framework for operating system development started in 2002
at INRIA and France Telecom R&D. Think defines a component library that implements the
main operating system services and a set of tools in order to manage component composition.
One of the main Think goal is to be as flexible as possible in order to build dedicated and fully
configurable operating system. In order to achieve these goals, Think uses a component approach
as far as possible. Therefore, it allows a developer to build a entire operating system from the
component library without being enforced into a predefined kernel structure.

Programming paradigm The Think project is clearly based on a component programming
paradigm. Indeed, Think is an implementation of the Fractal [12] component model which is
a high-level generic component model. This model is hierarchical and defines component as
run-time entities. Therefore, a Fractal component may be made of other components and is
defined through a content, a controller and a set of required and provided interfaces. A content
implements the functional part of a component. In a case of a hierarchical component, a content
is made of sub-components and in a case of a base component a content is made of code. A
controller manages the content of a component. At least, a controller can control the life-
cycle of a component and also its structural content with adding or removing sub-components.
Concretely, content of lowest-level components are made of C or assembly code, while description
of component composition and component hierarchy is made through an Architecture Description
Language (ADL) defined by the Fractal component model. It must be noticed that the Fractal
ADL aims to be flexible in order to integrate various aspects of composition depending on
application domain.

Granularity In order to achieve its flexibility goal, Think adopts components everywhere.
Indeed, in Think everything is a component. As it is based on a hierarchical component model,
Think provides different component granularity. A component may be as fine-grain as a mutex
or as coarse-grain as a device driver. However, although the systematic use of components in
operating system provides benefits (e.g. reusability, flexibility and portability), there is a tradeoff
to achieve between component granularity and run-time overhead as components are run-time
entities. A general approach adopted by Think is that components who share the same data are
not decomposed. As an example, an IP session component doesn’t need to be decomposed into
one component for handling input data and another one for handling output ones. Nevertheless,
in Think the granularity of configuration can be from fine-grain to coarse-grain using hierarchical
property.

Depth Think does not predefined the operating system structure, thus the kernel part itself
can be configured. Moreover, it must be noticed that Think does not identify the classical system
decomposition (i-e resources level, kernel level, services level and applications level) as each level
is developed in a homogeneous way using components. Thus each level can be configured using
the same mechanisms.

Time Think provides configuration facilities at both development and run-time. However, the
main configuration of a system is achieved at development time. At run-time, configuration is
facilitates as components are run-time entities. Moreover, the Think framework provides a dy-
namic loader and the concept of optional interfaces that allows a component to use a service if an
only if it is present. Therefore, a component may use different services while the system evolves.
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However, Think does not tackle any of the issue of run-time configuration, thus everything must
be foreseen by developers.

Integrity The Think framework validates a given configuration thanks to the classical interface-
type checking based on services signatures. Moreover, a configuration is validated if and only
if all the mandatory required services of components are satisfied. This validation is achieved
thanks to the ADL files of a system that describe which and how components are involved.
At run-time, several extensions has been developed in order to validate a configuration from a
quality of service point of view [58] and from a security one [56].

Application domain Although Think does not target any particular application domain, in
practice it is more used for embedded systems. Indeed, the Think library has been ported to
many ARM processors, but also on ST Microelectronics DSP processor, Tini Internet Interface
and MindStorm Lego RCX. However, some ports has also been achieved on more powerfull
microprocessor such as PowerPC G3 and G4 and Intel X86. It must be noticed that the number
of ports is facilitated because it only deals with a minimum number of components which are
the ones that reify the hardware.

3.13 TinyOS

TinyOS [31, 34] is an open-source operating system from the University of California designed
for wireless embedded sensor networks. TinyOS provides a new component model suitable for
this kind of systems and provides a library dedicated to networking and sensor data collection.
Its goal is to provide mechanisms to build highly specialized operating systems with a particular
focus on memory footprint.

Programming paradigm TinyOS is developed using the nesC language [30] which is a com-
ponent programming language. A nesC component provides and uses interfaces which are the
unique access points to the component. An interface models some services and is specified by
an interface type. Interfaces are bidirectional: they contain commands and events. The provider
of an interface implements the commands, while the users implements the events. Moreover, a
component may have several interfaces of the same type but with different names.

The nesC language provides a hierarchical component model as component may be made of
other components. In this case, components from the lowest level are called module components,
while components from the upper level are called configuration components.

Granularity TinyOS provides a library of small components that implement functions such
as the UART, timer. More complicated part of the system such as network management is
divided into several sub-components. To give an idea, component have an average of 120 lines
of code. However, TinyOS is classified as a mid-grain configurable operating system as a unit of
configuration encapsulates several services.

Depth TinyOS allows to configure each level of the operating system, including the kernel
itself.

Time All the system can only be configured at development time using the nesC language.
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Integrity The integrity of a given configuration is enforced by the nesC compiler. It must
be noticed that nesC is a unique language dedicated to component programming. Moreover,
the same language is used to described component behavior as well as component configuration.
Nevertheless, the integrity aspect is still limited to interface signature.

Application domain TinyOS targets wireless network embedded systems which are very con-
strained systems. It is why no dynamic memory allocation is allowed and the full component
graph is know at compile time. These restrictions make the whole program analysis and opti-
mization significantly simpler and more accurate. As an example, the nesC compiler eliminate
unreachable code as well as inline small functions. A typical instantiation of TinyOS fits in 178
bytes of memory.

4 Comparison

This section aims to compare the surveyed operating systems in order to evaluate how much a
system is configurable. The following comparison is only based on the granularity, depth, time
and integrity criteria, as they qualify how much a system is configurable. Indeed, the program-
ming paradigm is useless for the comparison as it only captures how a configuration is achieved.
Likewise, the application domain criteria is useless to figure out the level of configurability of a
given operating system. However, this criteria is used to compare operating systems that belong
to the same application domain. The application domains are the distributed one, the general
purpose one and the dedicated one, as mentioned in section 2.

Each comparison criteria has a set of possible values as identified in the section 2. For
the granularity criteria, the set of values are fine, mid and coarse grain. Moreover, from a
configurability point of view, a fine grain is more configurable than a mid grain which is itself
more configurable than a coarse grain. The granularity criteria can therefore be expressed as:

G = {fine,mid, coarse} and fine > mid > coarse
For the depth criteria, the possible values are either full, partial-small, partial-medium or

partial-big. Moreover, from a configurability point of view a full operating system is more
configurable than a partial-small one, which is more configurable than a partial-medium one and
partial-big one. The depth criteria can therefore be defined as:

D = {full, p-small , p-medium, p-big} and full > p-small > p-medium > p-big
For the time criteria, the only possible values are development stage, boot stage or execution

stage. A development stage configuration is basic, while a boot stage one is more complicated
but less than a execution stage one. Thus, time criteria is defined as:

T = {devpt, boot, exec} and exec > boot > devpt
Finally, the integrity criteria has only three possibles values which are none, semantic and

security. The order between these values is defined as:
I = {none, semantic, security} and security > semantic > none

From these definitions, a given operating system, Si, is therefore a subset of the union of the
sets defines by the granularity (G), depth (D), time (T ) and integrity (I) sets:

Si ⊂ (G ∪D ∪ T ∪ I)
If Si = {Gi, Di, Ti, Ii} and Sj = {Gj , Dj , Tj , Ij} are two different operating systems, we say

that Si is more configurable than Sj if and only if Gi ≥ Gj , Di ≥ Dj , Ti ≥ Tj , Ii ≥ Ij and if at
least one element of Si is greater than the one in Sj (otherwise Si and Sj are equals). Moreover,
Si is strictly more configurable than Sj if and only if Sj is a subset of Si, i-e Sj ⊂ Si. These
two comparison definitions allows to differentiate an operating system with greater values from
an operating system that covers a wider range of criteria values.
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The three following graphs (cf. figure 1, 2 and 3) present a visual comparison of each surveyed
operating systems in regards with their application domain. The graph in figure 1 deals with
the general purpose operating systems. It shows that from these comparison criteria MetaOS
and Spin are equals and are more configurable than OSKit an Linux. However, the difference
between MetaOS and Spin is about the provided configuration tools and facilities which is not
captured with the criteria. Likewise, graph in figure 2 shows that Choices and K42 are equals,
although K42 is more convenient to use as it integrates some automatic mechanisms for dynamic
reconfiguration. Finally, graph on figure 3 shows that no operating system can be identified
as the most configurable one in dedicated application domain. However, from the comparison
definitions, Think is strictly more configurable than MMLite as Think also provides a mid and
coarse grain granularity.
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Figure 1: Comparison of general purpose operating systems.

5 Analysis

Although the previous sections demonstrated that configurability is achieved in various different
ways, many aspects have still not been tackled. In this section, we presents an analysis of the
previous surveyed operating systems in order to point out their main lacks to be more configurable
and easier to use and validate:

• Configuration of an operating system is always seen from a functional point of view, but
never from a non-functional one. Indeed, a configuration is always validated if all required
services are present and compatible from a signature point of view, but not how these ser-
vices are provided. Nevertheless, operating systems such as MMLite or OSKit check some
fixed nonfunctional aspects such as version compatibility or architecture constraints. How-
ever, the type of checked aspects is fixed and there is no way to define which kind of aspect
must be checked in addition to the functional one. A classical way to add nonfunctional
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Figure 2: Comparison of operating systems for distributed systems.
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Figure 3: Comparison of dedicated operating systems.
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attributes to a part of a system is to used reach interfaces [9]. A rich interface usually
contains informations about method signatures, pre and post conditions, protocol speci-
fications and quality of service requirements including security, fault-tolerance, resources
or real-time requirements. This kind of issue is widely studied in classical distributed ap-
plications [50, 43]. Moreover some recent studies deal with security [56] and quality of
service [58] in configurable operating system. It must be noticed that most of the studies
dealing with non-functionnal aspects are based on a component programming paradigm as
interfaces are clearly expressed.

• Although a lot of projects claim to deal with run-time configuration, a lot of issues are still
not tackled. One of the main one is about the state transfer when a part of a system must
be replaced. Indeed, this aspect must always be foreseen and programed by developers.
Another issue is about which part of the system can be effectively configured at run-time.
Although most of the project do not mention about this issue, the K42 project explicitly
excludes code linked to low-level aspect from dynamic configuration. Finally, the last issue
concerns the timeless of configuration in order to guarantee that a configuration will be
achieved within a certain time frame. A further issue will concern the dynamic management
of nonfunctional aspects as explained previously.

• The choice of the granularity of the unit of configuration is a tradeoff between the system
complexity, possibility of configuration and run-time cost. Indeed, more units are fine
grain, more the system is configurable and customizable and more it is complex. Moreover,
at run-time the system needs to keep its structure explicitly in order to be able to identify
or configure each part. It also means that more units are fine grain, more the cost is
important. A way to tackle this tradeoff is to use hierarchical programming model such as
the component one. However, it does not take into account the run-time cost as the unit
of configuration at development time is the same at run-time. It should be interesting to
be able to specify at development time which part of the system should be reconfigured.
Although, it requires to know how the system will be used, it can avoid most of the cost
by keeping only the relevant part of the structure alive at run-time.

• All development-time configurations achieved by the surveyed operating systems are done
manually. In the case of applications specific operating system, the developer needs to know
the exact requirements of applications. It should be interesting to have some mechanisms
that can evaluate applications code and determine which operating system configuration
is the most suitable. By this way, applications developers have only to focus on their
applications and not on the lowest part of the system. Such mechanisms can be based
either on a purely code analyzer or on design patterns. Indeed, using design patterns, it
would be easier to automatically identify the way application is working and therefore its
requirements from an operating system point of view. However, such design patterns must
be specific to each application domain and they must be opened enough to fit a wide range
of applications inside a domain.

6 Conclusion
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