The candidate set consists of 25 single equations and 2 pairs of equations, all in terms of the Sheffer stroke operator |.
% candidate single axioms ((x | (x | (x | y))) | (y | (x | z))) = y (Equation 1) ((x | (x | (x | y))) | (y | (z | x))) = y (Equation 2) ((x | (x | (y | x))) | (y | (x | z))) = y (Equation 3) ((x | (x | (y | x))) | (y | (z | x))) = y (Equation 4) ((x | (x | (y | y))) | (y | (x | z))) = y (Equation 5) ((x | (x | (y | y))) | (y | (z | x))) = y (Equation 6) ((x | (x | (y | z))) | (y | (z | x))) = y (Equation 7) ((x | (x | (y | z))) | (z | (x | y))) = z (Equation 8) ((x | ((y | x) | x)) | (y | (x | z))) = y (Equation 9) ((x | ((y | x) | x)) | (y | (z | x))) = y (Equation 10) ((x | ((y | z) | x)) | (y | (z | x))) = y (Equation 11) (((x | y) | z) | (x | (x | (z | x)))) = z (Equation 12) (((x | y) | z) | (x | (x | (z | y)))) = z (Equation 13) (((x | y) | z) | (x | ((x | z) | x))) = z (Equation 14) (((x | y) | z) | (x | ((y | z) | x))) = z (Equation 15) (((x | y) | z) | (x | ((z | x) | x))) = z (Equation 16) (((x | y) | z) | (x | ((z | y) | x))) = z (Equation 17) (((x | y) | z) | (x | ((z | z) | x))) = z (Equation 18) (((x | y) | z) | (y | (y | (z | x)))) = z (Equation 19) (((x | y) | z) | (y | (y | (z | y)))) = z (Equation 20) (((x | y) | z) | (y | ((x | z) | y))) = z (Equation 21) (((x | y) | z) | (y | ((y | z) | y))) = z (Equation 22) (((x | y) | z) | (y | ((z | x) | y))) = z (Equation 23) (((x | y) | z) | (y | ((z | y) | y))) = z (Equation 24) (((x | y) | z) | (y | ((z | z) | y))) = z (Equation 25) % candidate pair ((x | y) | (x | (y | z))) = x (Equation 26a) (x | y) = (y | x) (Equation 26b, Commutativity) % candidate pair ((x | z) | (x | (y | z))) = x (Equation 27a) (x | y) = (y | x) (Equation 27b, Commutativity)
Here is the candidate set in clause form, suitable as input to Otter. f(x,y) denotes x | y, an application of the Sheffer stroke operator.
% candidate single axioms f(f(x, f(x, f(x, y))), f(y, f(x, z))) = y # label("Equation 1"). f(f(x, f(x, f(x, y))), f(y, f(z, x))) = y # label("Equation 2"). f(f(x, f(x, f(y, x))), f(y, f(x, z))) = y # label("Equation 3"). f(f(x, f(x, f(y, x))), f(y, f(z, x))) = y # label("Equation 4"). f(f(x, f(x, f(y, y))), f(y, f(x, z))) = y # label("Equation 5"). f(f(x, f(x, f(y, y))), f(y, f(z, x))) = y # label("Equation 6"). f(f(x, f(x, f(y, z))), f(y, f(z, x))) = y # label("Equation 7"). f(f(x, f(x, f(y, z))), f(z, f(x, y))) = z # label("Equation 8"). f(f(x, f(f(y, x), x)), f(y, f(x, z))) = y # label("Equation 9"). f(f(x, f(f(y, x), x)), f(y, f(z, x))) = y # label("Equation 10"). f(f(x, f(f(y, z), x)), f(y, f(z, x))) = y # label("Equation 11"). f(f(f(x, y), z), f(x, f(x, f(z, x)))) = z # label("Equation 12"). f(f(f(x, y), z), f(x, f(x, f(z, y)))) = z # label("Equation 13"). f(f(f(x, y), z), f(x, f(f(x, z), x))) = z # label("Equation 14"). f(f(f(x, y), z), f(x, f(f(y, z), x))) = z # label("Equation 15"). f(f(f(x, y), z), f(x, f(f(z, x), x))) = z # label("Equation 16"). f(f(f(x, y), z), f(x, f(f(z, y), x))) = z # label("Equation 17"). f(f(f(x, y), z), f(x, f(f(z, z), x))) = z # label("Equation 18"). f(f(f(x, y), z), f(y, f(y, f(z, x)))) = z # label("Equation 19"). f(f(f(x, y), z), f(y, f(y, f(z, y)))) = z # label("Equation 20"). f(f(f(x, y), z), f(y, f(f(x, z), y))) = z # label("Equation 21"). f(f(f(x, y), z), f(y, f(f(y, z), y))) = z # label("Equation 22"). f(f(f(x, y), z), f(y, f(f(z, x), y))) = z # label("Equation 23"). f(f(f(x, y), z), f(y, f(f(z, y), y))) = z # label("Equation 24"). f(f(f(x, y), z), f(y, f(f(z, z), y))) = z # label("Equation 25"). % candidate pair f(f(x, y), f(x, f(y, z))) = x # label("Equation 26a"). f(x, y) = f(y, x) # label("Equation 26b, Commutativity"). % candidate pair f(f(x, z), f(x, f(y, z))) = x # label("Equation 27a"). f(x, y) = f(y, x) # label("Equation 27b, Commutativity").